Recent Advances on Nanotechnology Applications to Cancer Drug Therapy

Carolina Bellera^{1,2}, Melisa E. Gantner², María E. Ruiz³ and Alan Talevi^{1,2,*}

Abstract: One of the greatest challenges in cancer drug therapy is to maximize the effectiveness of the active ingredient while reducing its systemic adverse effects. Conventional (non-targeted) systemic drug therapy is characterized by unspecific distribution of the anticancer drugs: both healthy and affected tissues are thus exposed to the chemotherapeutic agent, giving raise to off-target side-effects. Besides, a number of widely-used chemoterapeutic agents present unfavorable physicochemical properties, such as low solubility or low stability issues, limiting their available routes of administration and therapeutic applications. Nano-delivery systems seem as promising solutions to these issues. They can be used for targeted-drug release, diagnostic imaging and therapy monitoring. Nanosystems allow the formulation of drug delivery systems with tailored properties (e.g. solubility, biodegradability, release kinetics and distribution) that provide means to improve cancer patients' quality of life by lowering the administered dose and, incidentally, the cost of clinical treatments. This article overviews the main features of different nanovehicles (linear and non-linear polymeric nanosystems, lipid-based systems, inorganic nanoparticles) and presents a selection of reports on applications of such systems to cancer therapy published between 2010 and 2013.

Keywords: Anticancer Drug Therapy, Dendrimers, Inorganic Nanoparticles, Liposomes, Nanocapsules, Nanogels, Nanospheres.

1. INTRODUCTION

Multiple dosing regimens are the most common drug-based therapeutic interventions. Thinking of systemic therapies, conventional drug delivery systems rely on establishing a dynamic equilibrium or, more precisely, a pseudo-equilibrium between the free drug plasmatic concentration the drug concentrations in all the other body tissues (as open systems, a true equilibrium is never truly achieved within living systems due to the permanent mass exchange with the environment; furthermore, multiple dosing delivers the drug in discrete units while, once absorbed, elimination from blood is a continuous process). After a number of doses are administered, a steady state is reached, during which plasmatic concentration will fluctuate between practically fixed maximal and minimal steady state concentrations, as long as the treatment goes on. Since only the free, unbound drug can interact with its molecular target, the free drug levels at the vicinity of the site of action (generally) determine the extent of the pharmacological response [1]. An implication of the previous discussion is that, to attain effective concentrations of an active ingredient in its biophase or site of action, the patient is subjected to systemic exposure to the drug, which often leads to off-target undesirable side effects. In other words, conventional drug delivery systems are characterized by non-specific distribution: to attain therapeutic levels in the biophase, otherwise unneeded levels are accepted in the rest of the body. Patients undergoing drug therapy are thus exposed to: a) large doses to compensate such ubiquitous distribution within the organism and attain effective concentrations in the vicinity of the molecular target and; b) off-target drug effects, which could be ameliorated or avoided if targeted drug delivery systems were used. Patients receiving anticancer treatment constitute a very illustrative example of the consequences of the previous setting: a majority of the well-recognized adverse reactions to chemotherapy emerge from interactions between the drug molecules and healthy cells.

Besides safety issues, there are also a diversity of biopharmaceutical problems related to chemotherapeutic agents. Many commonly used anticancer drugs such as the *Vinca* alkaloids,

¹Biopharmacy, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47 & 115, La Plata (B1900AJI), Buenos Aires, Argentina

²Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP) – Argentinean National Council for Scientific and Technical Research (CONICET) - CCT La Plata - La Plata (B1900AJI), Buenos Aires, Argentina

³Quality Control of Medications, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata (B1900AJI), Buenos Aires, Argentina

^{*}Address correspondence to this author at the Biopharmacy, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47 & 115, La Plata (B1900AJI), Buenos Aires, Argentina; Tel: 542214235333 ext 41; Fax: 54 - 221-422-6947; E-mail: atalevi@biol.unlp.edu.ar, alantalevi@gmail.com

anthracyclines, epipodophyllotoxins, taxanes actinomycin D are substrates of ATP-Binding Cassette (ABC) transporters involved in multi-drug resistance issues, which may reduce their bioavailability at tumoral cells expressing high levels of such carriers [2-4]. Several antineoplastic agents such as 5-fluorouracil, camptothecins, gemcitabine and curcumin are very rapidly metabolized or inactivated in the physiological environment [5-8]. Drugs with short half-life present difficulties to build up and sustain effective levels at the biophase (limiting the duration of the pharmacological effect or requiring large doses just to compensate metabolism). The poor aqueous solubility of a diversity of antineoplastic drugs (e.g. taxanes) precludes their IV administration or demands the use of highly toxic solvents [9].

Encapsulating or conjugating active ingredients within nano-sized vehicles that hide the drug from clearance mechanisms (in a sort of Trojan horse approach), maintaining their integrity throughout the distribution process and selectively directing the drug to its molecular target seems like a very appropriate strategy. An ideal drug delivery device should: a) compensate unfavorable physicochemical properties of the active ingredient; b) efficiently encapsulate, entrap or adsorb drug molecules; c) conceal the drug from enzymatic and non-enzymatic cleavage, undesired biotransformation and recognition by efflux transporters; d) extravasate; e) direct the active ingredient to its therapeutic target; in the case of intracellular targets, promote cellular uptake and deliver the drug to its subcellular location; f) once in the vicinity of the target (and not before), release the drug load in a controlled manner; g) present no toxicity nor accumulation within the body and, preferentially, be biodegradable. Some years ago, a device which gathered such a wide range of features would have been inconceivable. Today, burgeoning advances on nanobiotechnology have brought us closer to our dreamt delivery system, reviving Ehrlich magic bullet concept. Nanosystems are currently produced from a profusion of materials (and, more interestingly, materials combinations), in a wide range of tailored morphologies and sizes, and in a broad spectrum of surface coatings and functionalizations.

The pathological anatomy and physiology of cancerous tissue allow the development of both passive and active targeting strategies. On the one hand, a large number of genes (including many cell surface and nuclear receptors) are amplified or overexpressed in cancer cells [10-15]. On the other,

the vasculature around cancer cells is poorly formed, which leads to large gaps between adjacent endothelial cells and consequently to enhanced permeation of large macromolecular delivery systems in the range of 20-200 nm [16]. Also, due to the rapid growth of the tumor, lymphatic drainage is deficient. Altogether, these phenomena are known as the Enhanced Permeability and Retention (EPR) effect [17-19]. In contrast, healthy tissues are much less permeable to macromolecules and large colloid particles, as pore sizes in the endothelia of blood vessels in most healthy tissues are ~2 nm, while ~6 nm pores are found in postcapillary venules [20]. The EPR phenomenon in cancer provides an opportunity to target diseased cells simply by controlling the size of the delivery system (i.e. passive targeting) [18, 19].

A last general consideration pertaining to the disposition of nanocarriers is that, while free drug usually follows biotransformation and excretion through bile and urine, drugs encapsulated within nanovehicles extracted through the mononuclear are mainly phagocyte system (MPS), mostly by fixed macrophages in the lymph nodes, the liver and the spleen [21]. Once in the bloodstream, non-coated nanoparticles (NP) are rapidly opsonized and massively cleared by those fixed macrophages. Both the composition (type, hydrophobicity, biodegradation profile) of the NP and the associated drug (molecular weight, charge, localization in the NP: adsorbed, dissolved or encapsulated) have a great influence on the drug distribution pattern in the MPS organs [22]. This propensity of nanosystems to localize in the MPS represents an excellent opportunity for passive targeting of drugs to the liver and the spleen [23, 24], and has been employed for chemotherapy of the MPS localized tumors: hepatocarcinoma metastasis arising from digestive tract, gynaecological cancers, bronchopulmonary tumors, myeloma and leukemia, among others [22, 25]. In contrast, this characteristic biodistribution becomes a major obstacle for drugs whose site of action is located in other tissues. A great deal of work has been devoted to developing so-called 'Stealth™' particles, which are 'invisible' to macrophages [22]. These Stealth™ NP have been shown to be characterized by a prolonged half-life in the blood compartment and are able to directly target most tumors located outside the MPS regions [26-28]. Steric stabilization of NP has been achieved by adsorbing hydrophilic surfactants on the NP surface or by using block/branched copolymers. Poly(ethylene oxide) (PEO) and poly(ethylene glycol) (PEG) are the most successful nonionic hydrophilic

polymers used for this purpose [29-31], However, a number of limitations to the use of PEG have also been described [32], such as the production of anti-PEG antibodies or the impairment of cellular internalization by the stealth coating. Depending on the nature of the nanovehicle, different approaches have been explored to circumvent these limitations, e.g. stimuli-responsive PEG-derivatized nanocarriers [33-35]. The effect of particle size on in vivo distribution has also been studied [36], suggesting that particle size below 100 nm tends to increase circulation lifetime.

This review article wills overview recent advances (2010-2013) on the development of nanocarriers for anticancer therapeutics. We have organized the discussion on the basis of the materials from which the presented developments have been derived (namely linear polymers, branched polymers, lipids and inorganic materials), even though the reader will appreciate throughout the review that the general tendency in the development of targeted drug nanovehicles seems to be the combination or arrangement of different materials (or even carriertypes) in complex platforms with very specific properties. Since the reports on the reviewed subject are abundant, excluding the possibility of an exhaustive review, we have selected those developments that from our point of view represent innovative contributions to the field and/or reflect a current tendency.

2. LINEAR POLYMERIC NANOPARTICLES

NP have been among the most widely studied particulate delivery systems over the past three decades. They are defined as submicrometer-sized, insoluble, solid-colloidal polymeric particles with sizes ranging from 10 to 1000 nm in which the drug can be dissolved, entrapped, encapsulated, or adsorbed [37, 38]. In the present work, we used the expression linear polymeric NP to denote the nanosystems formed by initially linear polymers that may be cross-linked in the synthesis pathway, but not branched or star-shaped, as in the case of dendrimers, which will be covered in section 3.

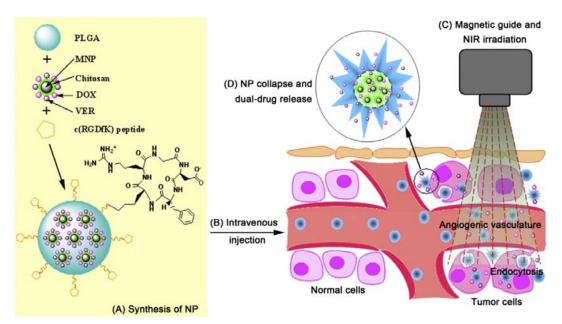
Depending on the preparation process of NP, nanospheres (NS) or nanocapsules (NC) can be obtained. NS are matrix-like structures where the drug can either be firmly adsorbed on the surface of the particle or dispersed/dissolved in the matrix itself. NC, on the other hand, consist of a polymer shell and a core, where the drug can either be dissolved in the inner core or adsorbed onto the surface [39]. NP formulation of anticancer drugs has attracted intensive research interest in the past decades and has become an important area in cancer-oriented nanotechnology applications: in all cases, the effectiveness of the treatment is directly related to the treatment's ability to target and kill the cancer cells while affecting as few healthy cells as possible [40].

One general problem that may occur after NP administration is the premature, off-target burst release of drugs in the bloodstream, which redounds in low efficiency and toxicity to healthy tissues [41]. After the initial burst release, the drug release from the NP may become very slow. Cancer cells have many drug resistance mechanisms; therefore, if the drug influx into the cancer cell is lower than the capacity of drug removal by ABC transporters and other detoxication mechanisms, the drug cannot build up an effective concentration [2-4, 37, 42-44]. The initial burst release is determined by poorly entrapped drugs or drugs weakly adsorbed onto the particles' surface. In this sense, the interactions between the drug molecules and the NS/NC should be strong enough to provide good encapsulation and not too fast or too slow release. Appropriate cross-linking can be used to modify the drug release kinetics, which is one of the main advantages of these vehicles [45-47].

The purpose of this section is to highlight the most recent advances related to the use of polymeric NS and NC that have been used in chemotherapeutic drug delivery. A comprehensive review of this area of research is beyond the scope of this section and hence the readers are referred to other sources for additional information [22, 25, 38, 39, 48-50].

2.1. Combining Strategies: Nanospheres for Targeted and Triggered Drug Delivery

The addition of targeting ligands onto the surface of NP aims to increase selective cellular binding and internalization through receptor-mediated endocytosis, which is known as active targeting. Without the incorporation of targeting ligands, NP rely on nonspecific interactions with cell membranes, which can be especially low when covered with a layer of PEG polymers. As has been underlined in the general introduction, to differentiate healthy from cancerous cells, ligands having specificity for receptors that are over-expressed on cancerous cells, but are normally or minimally expressed on normal cells can be selected [40, 51-53].


folic acid receptor alpha (FRα), glycosylphosphatidylinositol-linked protein, is overexpressed on the surface of numerous human cancer cells (including the malignant tumor cells of ovary, brain, kidney, breast, lung and uterine cervix) [54, 55]. Consequently, several different polymeric NP have been synthetized with folic acid (FA) conjugated onto their surface, loaded with drugs like doxorubicin (Dox) [56], paclitaxel [57] and 17-AAG [58], among several other chemical compounds [59-62]. Other targeting moieties that have been used in the design of targeted NP include: antibodies or antibodies fragments [63-65], aptamers [66-69], proteins and peptides [70-74].

Some of the main applications of polymeric materials to form NP arise from their stimulus-responsive nature, that is, their ability to undergo reversible volume phase transitions in response to environmental stimuli such as pH [75-78], temperature [79-81], redox environment [82, 83], ionic strength [84, 85], and/or the action of an external electromagnetic field [86-89]. This behavior is governed by the balance between repulsive and attractive forces acting in the particles: swelling occurs when ionic repulsion and osmotic forces exceed attractive forces, such as hydrogen bonding, hydrophobic interactions and van der Waals interactions, among others [90-92].

Therefore, the combination of these tools may result in a synergistic effect: ligand-functionalized surfaces and stimulus-responsive materials are two different strategies aimed to achieve a common goal: to minimize the side effects of systemic exposure to cytotoxic chemotherapeutic agents. Fox example, a 2013 work by Shen et al. [70] proposes the synthesis of NS presenting RGD peptide-mediated tumor targeting, embedded with drug-loaded magnetic NC. RGD peptides target integrin expressing tumor vasculature [93, 94] while the superparamagnetic properties facilitate biomedical applications such as imaging, hyperthermia therapy, and magnetic response in an external magnetic field [95].

Two drugs, Dox and verapamil (Ver) were adhered by hydrogen bonds and adsorption to the chitosan shell of the coating of magnetic nanoparticles (MNP), which were later entrapped into the poly(lactic-co-glycolic acid) NP (PLGA-NP) by the double emulsion (W/O/W) solvent evaporation method, in order to prepare a dual-drug delivery system against both cancer and Doxinduced cardiotoxicity. Further modification was conducted by conjugating the tumor-targeting ligand, cyclo(Arg-Gly-Asp-D-Phe-Lys) (c(RGDfK)) peptide onto the end carboxyl groups on the PLGA-NP. The size of the resulting cRGD-Dox/Ver-MNP-PLGA NP was approximately 144 nm under simulated physiological environment. Figure 1 shows a representation of the NP synthesis and the drugs release mechanism.

In vitro cytotoxicity evaluation on HepG2 and S-180 murine sarcoma cells suggested that, due to the cRGD-mediated targeting strategy, the developed NP

Figure 1: Schematic representation of the cRGD-Dox/Ver-MNP-PLGA NP synthesis and the following Dox and Ver release. *Reprinted with permission from Shen et al.* cRGD-functionalized polymeric magnetic nanoparticles as a dual-drug delivery system for safe targeted cancer therapy. Pharmacological Research 2013; 70(1): 102-115, Copyright 2013 Elsevier.

possessed higher growth inhibition properties on cancer cells than free drug or cRGD-unconjugated NP. Biodistribution studies and whole-mouse optical imaging on S-180 sarcoma-bearing Balb/c mice demonstrated consistently preferential accumulation capability of the cRGD-Dox/Ver-MNP-PLGA NP in the tumoral tissue under magnetic guidance.

Another example of synergistic combinations is presented in the work of Khoee et al. [96], who developed a pH-sensitive polymeric NP targeted with folate groups and loaded with the anti-cancer drug quercetin. The formulation was produced by radical polymerization of three monomers: methacrylated poly(lactic-co-glycolic acid) (mPLGA) as a lipophilic domain, acrylated methoxy poly(ethylene glycol) hydrophilic part (aMPEG) as and N-2-[(tertbutoxycarbonyl)amino] ethyl methacrylamide (Boc-AEMA) as pH-responsive segment, followed by the removal of the protecting amine group (Boc) and the conjugation of the resulting copolymer with activated FA. Finally, the drug -which is poor water soluble- was loaded into the NP by a nanoprecipitation method. In vitro release experiments showed that quercetin release from the NP was pH-dependent, and much faster at pH 5.8 than at pH 7.4. The results indicated a conformational change in AEMA chains from a compacted shape to an expanded one with a decrease in the pH values. In expanded conformation, drug can diffuse out from the NP more easily than in a compact form. Even though the authors did not present results of the affinity nor the drug release in the presence of cancer cells, the folate group is expected to increase the specificity in the delivery of the encapsulated by the pH-sensitive NP.

Similarly, recent publications presenting new combinations of well-known systems can be found in the field of stimulus-responsive targeted NP for cancer drug therapy: magnetic NP targeted with folate [97], biotin-conjugated pH-responsive polymeric micelles [98], pH and redox dual responsive NP functionalized with cRGD peptide [99] and pH-sensitive chitosan-silica NS conjugated with an antibody molecule to ErbB 2 [100], among others.

A 2013 work by Zhao et al. [101] presents a polymeric NC for the delivery of recombinant apoptin fused with maltose binding protein (MBP-APO), in which the protein complex is non-covalently protected in a water soluble polymer shell (Figure 2). Apoptin is a protein encoded by chicken anemia virus which induces apoptosis in a variety of cells. The formulation

of the NC is produced by addition of acrylamide (AAm) monomer in the protein solution; followed by addition of a second monomer, N-(3-aminopropyl)methacrylamide (APMAAm). Different crosslinkers (N,N'-methylene bisacrylamide and N,N'-bis(acryloyl)cystamine) were added after the addition of APMAAm. Finally, the polymerization was produced by the addition of persulfate and N,N,N',N'ammonium tetramethylethylenediamine.

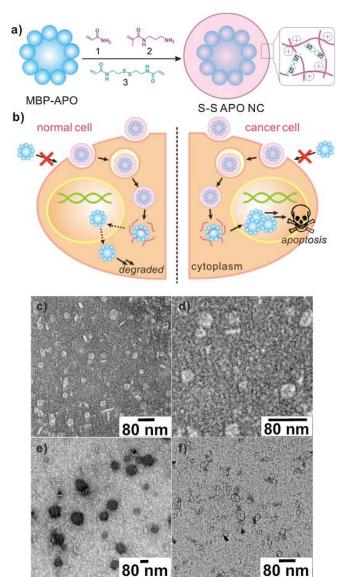


Figure 2: Degradable NC for apoptin delivery. (a and b) Schematic diagram of synthesis of degradable apoptin nanocapsules (S-S APO NC) and delivery into tumor cells to induce apoptosis; TEM images of (c) native MBP-APO; (d) enlarged image of MBP-APO; (e) S-S APO NC; and (f) degraded S-S APO NC after treatment with 2 mM GSH for 6 h at 37 °C. Reprinted with permission from Zhao et al. Degradable polymeric nanocapsule for efficient intracellular delivery of a high molecular weight tumor-selective protein complex. Nano Today 2013; 8: 11-20, Copyright 2013 Elsevier.

The slightly positively charged shell shields the MBP-APO from serum proteases and surrounding environment, while enabling cellular uptake of the polymer—protein complex through endocytosis [102]. The polymeric layer is weaved together by the redoxresponsive cross-linkers containing disulfide bonds that are degraded once the NC are exposed to the reducing environment in cytoplasm [103]. No covalent bonds are formed between the protein cargo and the polymer shell, which ensures complete disassembly of the capsule layer and release of native MBP-APO inside the cell. A xenograft study verified that the degradable NC effectively delivered MBP-APO proteins to tumor cells in vivo, which was highly effective in limiting tumor progression. Upon further optimization of the pharmacokinetics of the APO NC, including surface derivatization with active targeting ligands, these particles may be IV administered as an anticancer therapy.

2.2. Layer-by-Layer Nanoshells

Layer-by-Layer (LbL) NP are an emerging class of therapeutic carriers that afford precise control over key design parameters, facilitating improved, controlled drug release features, and enhanced moleculartargeting capabilities. LbL technique, first introduced at the beginning of the 1990s by Decher, was first used to assemble multilayered films through successive ionic later deposition [104], that is, alternate deposition of polycations, such PAH (poly (allylamine as hydrochloride)) and PRM (protamine dextran) and polyanions, such as PSS (poly (styrene sulfonate)) and DXS (dextran sulfate) [105]. Because the assembly mechanism is so simple (though tedious), there is a minimum requirement of apparatus necessary [106], and this methodology rapidly spread within various research communities especially for the preparation of regular assemblies of various materials including polymers [107], biomaterials [108, 109] and inorganic substances [110]. The technique takes advantage of attractive electrostatic forces between charged polymers and oppositely charged surfaces, and film growth is achieved stepwise by the repetitive exposure of substrates to dilute polycation and polyanion solutions. For example, positively charged substrates are immersed into the solution of polyanion (negatively charged polymer, for example, PSS) for several minutes. As a result, a thin layer (thickness 1-2 nm) of the polymer is adsorbed on the surface. Charge overcompensation leads to a negative surface recharging. Then, the substrate is washed (a washing step is obligatory to remove excess reagents and thus

precisely control the growing layer thickness) and placed into the solution with polycation (positively charged polymer, for example, PAH). The polymer is attached electrostatically to the charged surface. The process can be repeated several times to reach a defined multilayer thickness controlled by layer coating cycling. [111-114]. A milestone innovation in the LbL technique was achieved through its application to assemblies onto a colloidal particle core [115], which allowed overcoming the limitation of the flat supports and obtaining micro and nanocapsules by the LbL technique. Often, an inorganic porous sacrificial template is used (usually, silica and calcium carbonate), which after dissolution leads to a hollow capsule (empty shell) [116, 117].

The main advantages of these capsules are their multifunctionality, modularity and structural control. Owing to the electrostatic driving force for multilayer build-up, a wide variety of constituents can be chosen, such as synthetic polyelectrolytes, enzymes, lipids, NP and others [118]. Mechanical and physicochemical properties of the capsules can be tailored by varying these constituents or by varying the capsule thickness. Furthermore, encapsulation within polyelectrolyte capsules can easily be achieved under mild conditions avoiding the use of organic solvents or mechanical stress, which is often applied during the synthesis of 'traditional' drug delivery particles such as, for example, liposomes. There are many approaches to attain drug loading. Direct coating of the drug substance itself, leading to drug particles cover by a polyelectrolyte membrane is one of the possibilities [119]. Alternatively, a post-loading procedure might be applied, in which the capsule permeability is reversibly altered by changes environmental factors (e.g. pH, light or solvent polarity) allowing drug inward diffusion [120-123] (naturally, the same principle can be used to provide controlled, triggered drug release). Another approach involves the use of mesoporous inorganic templates that are preloaded with the drug substances before being coated with polyelectrolytes. Although in the first decade of LbL study, most research was devoted to the assembly of synthetic polyelectrolytes, one current trend is to use natural biodegradable polyelectrolytes, such as chitosan, gelatins and dextran sulfate [104, 124]. Following this tendency, Zhou et al. recently used the LbL assembly technique for preparing LbL alginate/chitosan coatings on the top of biocompatible PLGA NP. FA or FA-grafted PEG (PEG-FA) was covalently bonded to the polyelectrolyte multilayer via carbodiimide chemistry. Cellular uptake

experiments were carried out by co-culture of HepG2 cells in the presence of NP. Flow cytometry and confocal laser scanning microscopy (CLSM) were used to investigate the influence of the surface chemistry of the NP on uptake. A significantly lower uptake of PLGA NP coated with chitosan/alginate was observed compared with bare NP, but the uptake increased after the attachment of FA molecules [125].

Other advances that deserve mentioning include stimuli-responsive LbL systems. For example, Ochs et al. reported the modular assembly of polymer-drug conjugates into covalently stabilized, pH-responsive, biodegradable films and capsules [126]. To that end, Dox was conjugated to alkine functionalized poly(Lglutamic acid) (PGAAIk). PGAAIk was assembled with poly(N-vinyl pyrrolidone) (PVP) on planar and colloidal silica by using a combination of click chemistry and LbL assembly. PVP and the silica template were later removed, to achieve single-component PGAAIK capsules. The polymer-drug conjugate could be incorporated at defined positions of the multilayer with controlled dose. The PGAAIk capsules were stable in the pH range between 2 and 11 and exhibited reversible swelling/shrinking behavior. The drug-loaded capsules could be degraded enzymatically, resulting in the sustained release of active Dox for around 2 h.

3. DENDRIMERS

Dendrimers are regularly branched polymeric macromolecules with unique structural and topological features [127, 128]. The term dendrimer comes from the Greek dendron, which means tree. They differ from traditional (linear) polymers in that they have a multibranched, 3D architecture with very low polydispersity and high functionality. A typical dendrimer comprises three different topological parts, which are: a) a focal core; b) building blocks with several interior layers composed of repeating units and; c) multiple peripheral functional groups. The focal core and the interior layers, composed of repeating units, can provide a flexible space created within the voids of dendritic building blocks, which may encapsulate various small guest molecules. The multivalent surface can accommodate a large number of functionalities that can interact with the external environment [129].

The dendrimeric structure is characterized by layers called generations (branching cycles). The number of generations corresponds to the number of branching points. A fifth generation dendrimer presents 5 focal points between the core and the surface. The core is

often called generation zero (G0). For example, in propylene imine (PPI) dendrimers, the core molecule is 1,4-diaminebutane; in polyamidoamine (PAMAM) dendrimers, the initiator core is either ammonia or 1,2etilendiamine. Dendrimers design can be based on a great diversity of functional groups, such as polyamines as in the case of PPI [130], a combination of amines and polyamides as in the case of PAMAM [127] or more hydrophobic poly(aryl ether) dendrimers [131]. Depending on the peripheral functional groups, dendrimers can be either neutral or charged. Their physical properties vary in a regular way depending on the number of generations. The diameter of dendritic molecules increases linearly with the number of generations [132]; the number of terminal groups duplicates with each generation [133].

Besides monodispersity, there are a number of other advantages associated with dendrimers that can be exploited in the drug delivery field. Biodegradable dendrimers might be obtained if cleavable functions (e.g. ester groups) are included in the polymer backbone. What is more, degradation kinetics might be controlled by adjusting the nature of the chemical bond connecting the monomer units, the hydrophobicity of the monomer units (hydrophilic monomers result in faster degradation), the size of the dendrimer (larger dendrimers determine slower degradation due to tight packing of their surface) and the cleavage susceptibility of the peripheral and internal dendrimer structure [134]. The large number of dendrimers' surface groups and the versatility in their chemical structures allow the conjugation of different drugs, imaging agents, and/or targeting moeities [134]. Asymmetric dendrimers might be prepared by coupling dendrons of different generations to a linear core, leading to "bow-tie" dendrimers; the asymmetry allows for tunable structures and molecular weights, control on the number of functional groups and improved versatility in relation to attachment of diverse drugs, imaging agents and targeting moieties. Finally, the presence of many polar termini redounds in high solubility; through entrapment of guest molecules in dendrimer's voids increased solubility of poorly soluble drugs may be achieved [135, 136]. The high specific surface and the spherical geometry confer dendrimers low intrinsic viscosity (compared to linear polymers) and high reactivity [133]. Among the limitations of these systems, we might highlight high production costs owing to multi-step synthesis [133], and difficulties to achieve controlled, sustained release in physiological conditions [134].

3.1. Dendrimers in Drug Delivery of Anticancer Drugs

As in the other reviewed nanosystems, recent advances in the application of dendrimers as drug delivery systems of anticancer agents seem to explore the use of complex multifunctional nanoplatforms.

Taratula et al. [137] developed a complex tumortargeted drug delivery system for simultaneous delivery of siRNA and MRI contrast agents (superparamagnetic iron oxide NP). 5 nm superparamagnetic NP were complexed with G6 PPI dendrimers and siRNA targeted to B-cell lymphoma 2 (BCL2) mRNA. The resulting NP were modified with heterobifunctional PEG by coupling the polymer to amino groups in the surface of the complexes (which are introduced by the dendrimers). The distal end of PEG was coupled with a synthetic analog of the luteinizing-hormone-releasing hormone (LHRH) peptide as targeting moiety. In vitro testing of the targeted nanoplatform on A549 cancer cells which overexpress LHRH and LHRH negative SKOV-3 cells proved that the nanocomplex was preferentially incorporated by cells overexpressing the targeted receptor. The authors also tested the codelivery of siRNA and cisplatin, finding that the cytotoxicity of cisplatin against multidrug resistant human cancer cells was enhanced in the presence of both non-targeted or LHRH targeted siRNA delivery vectors. Similar results were obtained in vivo in a xenograft model of human cancer, which showed that the combinatorial treatment (cisplatin plus siRNA) decreased tumor volume on 67.5% (compared to 36.2% for free cisplatin alone), while the LHRH targeted vector improved the results achieving a 75.5% decrease on tumor volume. A similar platform for the delivery of Dox was developed and tested by Chang et al. [138], who synthesized superparamagnetic iron oxide NP stabilized with PAMAM dendrimers conjugated to Dox. The chosen linker between the dendrimers and the drug was a hydrazone bond, which is acid-cleavable and can be used as pH-responsive release system.

Kirkpatrick *et al.* [139] complexed aqua cisplatin with half-generation PAMAM dendrimers in an attempt to design dendrimer-based cancer therapeutics. The amount of drug bound was found to proportionally increase with dendrimer generation. *In vivo* activity was examined using an A2780 tumor xenograft. The G6.5 cisplatin–dendrimer complex was administered in two doses (6 and 8 mg/kg equivalent of cisplatin) both of which were well tolerated by the mice. The lower dose

displayed comparable activity to free cisplatin with a tumor volume reduction of 32%, but the higher dose was significantly more active than free cisplatin with a tumor reduction of 45%.

A dual-targeting drug carrier based on PEGylated G4 PAMAM dendrimers with transferrin (Tf) and wheat germ agglutinin (WGA) on the periphery and Dox loaded in the inner space was synthesized and its blood brain barrier (BBB) penetration and tumor targeting properties were explored by the group of He et al. [140]. The nanosystem reduced the cytotoxicity of Dox to normal cells, while efficiently inhibited the growth of C6 glioma cells. Transport assays across the BBB showed that PAMAM-PEG-WGA-Tf delivered 13.5% of Dox in a period of 2 h, demonstrating an enhanced transport compared to single-targeted dendrimers (8% for PAMAM-PEG-WGA, 7% for PAMAM-PEG-Tf) and free Dox (5%).

4. HYDROGEL-BASED NANOSYSTEMS

Hydrogels are hydrophilic polymeric networks composed of either homopolymers or copolymers, which can entrap large amounts of water or biological fluids [38]. The hydrophilic polymer components are cross-linked into a network that provides dimensional stability to maintain the network structure of the hydrogels and to prevent dissolution of the hydrophilic chains [141], while the high solvent content gives rise to the fluid-like transport properties. Therefore, they can be defined as highly water-absorbing materials that remain insoluble in aqueous solutions owing to the internal chemical or physical cross-linking of their macromolecular chains, which vary in size and structure. They are considered nanogels when the particle size is less than 200 nm [142].

In general, hydrogels can be classified according to their composition, route of administration, method of preparation, physical structure, responsiveness to physiologic environment stimuli, type of material being delivered release kinetics [143-145]. or compositions can be divided into natural polymer hydrogels. synthetic polymer hydrogels combinations of the two classes. Natural and synthetic polymers are the most frequently used in the pharmaceutical and biomedical fields [146]. Valuable articles reviewing different aspects of hydrogel polymeric materials, their classification and applications are available in the literature [16, 147-149].

One of the main areas of application of hydrogelbased nanosystems is drug delivery. They share a common feature of self-assembly with polymeric micelles [49], but with a major advantage: while polymeric micelles possess only one hydrophobic internal core with a hydrophilic shell [150-153], the interior of hydrogel nanosystems consists of dispersed multiple hydrophobic island domains in a hydrophilic sea domain due to the random association of hydrophobic moieties conjugated to soluble macromolecules. This characteristic makes them suitable carriers for poorly soluble drugs like chemotherapeutic agents. Furthermore, the possibility to control the distribution of drugs in the body to reach specific tumor cells by controlling the particle size or by attaching receptor-specific molecules to the hydrogel NP (HNP) surface enhance their attractiveness as drug delivery system [154, 155]. Other special functions such as crossing the BBB, stimulus responsive nature and more sophisticated controlled release patterns may also be achieved [16].

4.1. Hydrogels-Based Nanosystems for Passive and Active Drug Targeting

Passive targeting may be achieved by taking advantage of the already commented EPR effect (see Introduction) [16, 18, 19]. Nanogels are drug delivery systems with ideal characteristic to exploit the EPR effect, which is exemplified by several works that have manage to synthesis small, monodispersed nanogels with great control over particle size and the ability to synthesize a wide range of diameters [156-159]. For example, Table 1 shows the parameters for poly(Nisopropylacrylamide) (pNIPAm) core particles synthesized by free-radical precipitation polymerization [156].

It is important to note that by gradually increasing the surfactant and initiator concentrations the particle size could be modified, in this case to approach the target 50 nm radius, and for all the syntheses, the batch to batch size variation was within 10% [156].

There are many studies related to nanogel-based drug delivery systems that exploit the EPR effect to passively deliver a chemotherapeutic agent. Hydrogelbased nanosystems have been developed that passively deliver poorly soluble chemotherapeutic agents as Dox [160], curcumin [161] and nucleoside analogues [162, 163]. A very recent study by Saboktakin et al. [164] present the synthesis and characterization of carboxymethyl starch and dextran hydrogels with porphyrin-based sulfate а photosensitizer (PS) agent incorporated. Photodynamic Therapy (PDT) is a light-activated treatment for cancer tumors and other diseases based on the fact that some PS can be accumulated to a higher concentration in tumor cells than in healthy cells upon systemic administration. By matching the wavelength of the therapeutic light to the absorption peak of the sensitizers, the light is absorbed by the PS, and the excited PS molecules can then transfer their energy to surrounding oxygen molecules, which are normally in their triplet ground state, to generate reactive oxygen species (ROS) such as singlet oxygen (1O2) or free radicals, which in turn are responsible for oxidizing various cellular compartments, resulting in irreversible damage to tumor cells [165].

One potential challenge of PDT is that many PS agents are lipophilic, making parenteral administration problematic [166, 167]. In addition, systemic administration of a PS leads to generalized photosensitivity and the temporary need to avoid light exposure. Various strategies to overcome these limitations have been investigated, including conjugation of PS agent to water soluble polymers and

Table 1: Parameters for Poly(N-isopropylacrylamide) (pNIPAm) Core Particle Synthesis. Bis: methylenebis(acrylamide); AAc: acrylic acid; AFA: 4-acrylamidofluorescein (fluorescent monomer); SDS: sodium dodecyl sulfate; APS: ammonium persulfate. Extracted from Blackburn et al. [156]

	Monomer	Cross-linker	Co-monomer	[SDS, Surfactant] mM	[APS, Initiator] mM	[Total Monomer], mM	<i>Rz</i> , nm
1	pNIPAm- 96%	BIS- 2%	AAc- 2%	2	2	70	86
2	pNIPAm- 96%	BIS- 2%	AAc- 2%	3	3	70	73
3	pNIPAm- 96%	BIS- 2%	AAc- 2%	4	4	70	53
4	pNIPAm- 98%	BIS- 2%	AFA- 0.1 mM	4	4	70	57
5	pNIPAm- 95%	BIS- 5%	AFA- 0.1 mM	4	4	40	44

colloidal administration, as well as encapsulation in different nanocarriers [168]. On the other hand, the advantage of porphyrin-based PS compounds include their ability to efficiently absorb a wide range of light spectra, especially red light ($\lambda \ge 600$ nm) (a region of the spectrum to which tissues are more transparent) [165], as well as high quantum yield of 1O_2 [169]. The nanogels developed by Satoktakin *et al.* present several combined advantages: the ability to solubilize the porphyrin-based hydrophobic agents, the uniform size of hydrogels, and the potential for passive targeting of solid tumors *via* the EPR effect, hence decreasing systemic photosensitization [164].

A 2013 work by Murphy et al. [170] describes the preparation of lipid-coated nanogels, which enable versatile and stable loading of drug cargoes and imaging agents within a crosslinked core. The authors used a previously described in vivo optimized bilayer composition [171] containing cholesterol, dioleoylphosphatidylethanolamine (DOPE), distearoylphosphatidylcholine (DSPC), distearoylphosphatidylethanolamine-PEG2000 (DSPE-PEG2000), and DSPE-(PEO)₄-cRGDfK as a template, in the molar ratio cholesterol:DOPE:DSPC:DSPE-(PEO)₄-cRGDfK: DSPE-mPEG2000 (6:6:6:1:1). The synthesis of the cyclic peptide cRGDfK (f denotes D-phenylalanine) using standard Fmoc solid phase chemistry and its coupling to DSPE is also described [171]. This peptide is a ligand for integrin ανβ3, which is widely accepted as a targeting moiety for the tumor neovasculature [172]. Once the lipid film was dried, it was rehydrated with a solution containing the desired monomers (hydroxyethylmethacrylated-PEG, albumin, α1-acid glycoprotein), the drug and a photoinitiator (Irgacure 2959 [173]) in phosphate buffer, and sonicated to form multilamellar vesicles. Extrusion, purification, and photo-crosslinking of the encapsulated monomers create a targeted lipid-coated nanogel, which enables stable loading of a wide array of chemotypes. The lipid bilayer acts as a template for the core and can be extruded to a defined size (100 nm hydrodynamic diameter) before photo-crosslinking to form the nanogel, which enables precise control of nanogel formation. Photo-crosslinking of the nanogel core enhances drug retention, thereby improving a major limitation associated with liposomes, micelles, and coblock polymeric systems.

The resulting nanogels were loaded with paclitaxel, docetaxel (taxanes), bortezomib (peptide mimetic), 17-AAG (antitumor antibiotic that targets Hsp90), sorafenib, sunitinib, bosutinib, or dasatinib (kinase

inhibitors), and tested in cell viability assays with M21 human melanoma cells, which express integrin $\alpha\nu\beta3$. In addition to the versatile drug loading capability, the assayed formulations demonstrated enhanced potency when compared to free drug. Furthermore, the authors proved that the docetaxel- and paclitaxel-loaded nanogels improve the *in vitro* efficacy beyond a clinically approved nanoparticle formulation (AbraxaneTM) in breast and pancreatic cancer cell lines [170].

Other examples of actively targeted nanogels include, among many other, a chitosan/alginate hydrogel-based NP funcionalized with antibodies toward death receptor 5 (DR5) that efficiently encapsulate photodynamic agents to treat colorectal tumours [174]; targeted delivery of Dox by chitosan NP surface functionalized with Trastuzumab (Herceptin™), a humanized monoclonal antibody directed against the Her2 receptor for the treatment of advanced breast cancer [175] and; hydrophilic nanosized particles of imine (PEG-PEI) PEG-polyethylene cross-linked cationic polymer network that actively target the triphosphate form of cytotoxic nucleoside analogues with folate as targeting agent [176].

In a 2010 work, Galmarini *et al.* present nanogels conjugated with multiple molecules of tumor lymphatic-specific peptide (LyP1) that enhanced the binding efficacy of nanocarriers to lymphogenic cancer cells. The authors assessed the performance of the targeted nanoformulation loaded with gemcitabine when injected in subcutaneous gemcitabine-resistant RL7/G xenograft tumor model, which demonstrated a 2-fold more efficient tumor growth inhibition than gemcitabine at a higher dose, with no systemic toxicity during the treatment, hence extending the versatility of nucleoside analogs in the treatment of drug-resistant lymphogenic tumors [177].

4.2. Stimulus-Responsive Hydrogels

The stimulus-responsive nature is a characteristic that these nanosystems have in common with polymer-based nanosystems (see section 2.1). Therefore, the capability of responsive nanogels to adapt to surrounding environments has been extensively exploited to develop drug delivery systems with increased specificity and targeting abilities to cancer cells and tissues [178-180].

A near infrared (NIR) triggered remote control drug delivery platform based on chemically reduced

graphene oxide (CRGO) modified by conjugation with chitosan (chitosan modified CRGO) and incorporated into a thermosensitive nanogel (CG-TSN) was recently introduced by Wang et al [181]. CRGO was chosen as photosensitizer since it has high absorption in the NIR region. Furthermore, the two-dimensional graphene structure with high specific surface area and functional enables facile biological/chemical groups functionalization. The thermo-responsive employed was pNIPAm, which undergoes a reversible discontinuous phase transition in water, changing from hydrophilic (swelling) to hydrophobic (shrinking) in response to temperature changes. At last, Dox was into CG-TSN incorporated (Dox-CG-TSN) demonstrate the NIR-light-triggered release of this widely used anticancer agent. Figure 3 shows a scheme of the synthesis and releasing mechanism of Dox-CG-TSN.

Confocal fluorescence images of TRC1 cells (mouse prostate cancer cells) demonstrated that the Dox-CG-TSN is taken up by cells via the endocytic pathway and transported into the endosome. Cytotoxicity assays in TRC1 cells showed that Dox-CG-TSN toxicity was less than free Dox at 37 °C but comparable to free Dox at 42 °C. Upon irradiation with NIR light (808 nm), a rapid Dox release from the Dox-CG-TSN was observed in vitro. When cancer cells (TRC1 and Lewis lung cancer cells, LLC1) were

incubated with Dox-CG-TSN and irradiated with NIR light, the irradiated system displayed significantly greater cytotoxicity than without irradiation, owing to NIR-triggered increase in temperature leading to nuclear Dox release [181].

The group of Matyjaszewski et al. possesses vast experience in the preparation of functional gel materials by atom transfer radical polymerization (ATRP), formed from a dual cross-linked polymeric network including a fraction of stable cross-links and a second fraction of cleavable cross-links [83, 157, 182-184]. interesting characteristic about the double-crosslinking system is that it can predictably open and close the polymeric network upon exposure to different redox The authors environments. prepared stable biodegradable nanogels cross-linked solely with disulfide linkages, which possess a uniformly crosslinked network that can improve control over the release of encapsulated agents. They are biodegraded into water-soluble polymers in the presence of a biocompatible glutathione tripeptide commonly found within cells. This biodegradation process triggers the release of encapsulated molecules, exemplified by rhodamine 6G, a fluorescent dye, and Dox. The results obtained from cytotoxicity assays in HeLa cancer cells suggested that the released Dox molecules could penetrate cell membranes to suppress the growth of cancer cells. Further experiments with glutathione in

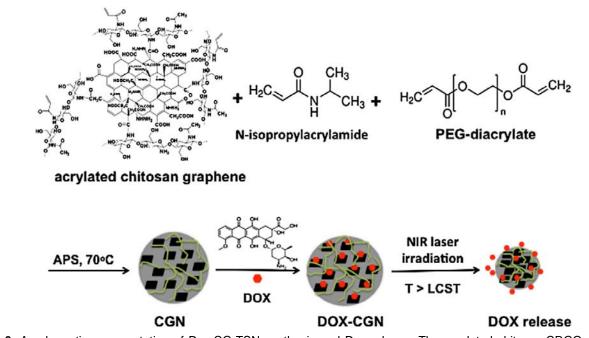


Figure 3: A schematic representation of Dox-CG-TSN synthesis and Dox release. The acrylated chitosan-CRGO monomers were copolymerized with NIPAm and PEG-diacrylate crosslinker to form a nanogel. Reprinted with permission from Wang et al. A chitosan modified graphene nanogel for noninvasive controlled drug release. Nanomedicine: Nanotechnology, Biology and Medicine IN PRESS (http://dx.doi.org/10.1016/j.nano.2013.01.003), Copyright 2013 Elsevier.

the reaction media showed that the Dox-loaded nanogels are essentially non-toxic before addition of the reducing agent, but after the reducing agent is added, the drug is released, and the cell growth is significantly inhibited due to the contact with the drug [83]. The presented nanosystem may also be targeted by its conjugation with biotin. The data presented show that each nanogel particle may bond 142,000 biotin molecules, which are promising results, since previous works have shown that the biotin-conjugated NP could improve the selective delivery of drugs into cancer cells *via* interactions with over expressed biotin receptors on the cells' surfaces [185].

Stimulus-responsive hydrogels also allow the preparation of drug delivery systems able to respond to a combination of stimulus. Many examples can be found of these dual-responsive materials [91, 186-188], like the work of Zhou *et al.* [189], who designed a chitosan-based nanogels through the physical interpenetration of chitosan chains into a nonlinear PEG chain network. The resultant PEG-chitosan nanogels not only respond to the changes in environmental pH over the physiologically important range of 5.0–7.4 but, more importantly, also allow the remotely modulation of the pH-response by external cooling/heating.

5. LIPID BASED NANOSYSTEMS

Achieving nanocarriers with low or no toxicity either in vivo or to the environment (as a byproduct) is one of the biggest challenges in designing drug delivery nanosystems. Ideally, the drug carrier should be removed from the body after drug release. But, unless the nanocarrier is biodegradable, it will remain in the body and be dealt as a foreign body, stimulating innate elements of the immune system (inflammation, foreign body reaction) [190, 191]. Another concern in relation to the accumulation of non-degradable materials inside the body is the potential induction of malignancy resulting from frustrated phagocytosis and prolonged inflammation [190, 192]. Lipid-based nanoparticles (LN) are probably the least toxic for clinical applications [193], especially when developed from natural lipids. The hydrophobic constituents of lipid-based systems also provide a suitable environment for entrapment of hydrophobic drugs (e.g. many anticancer agents), which represent about 40% of newly developed drugs [194]. LN have been used for enhancing lipophilic drug absorption, bioavailability and, of course, their clinical efficacy [39]. In the light of these advantages, three

main types of LN have been extensively explored for anticancer drug delivery: liposomes (LP), solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC).

LP are, by far, the most studied LN. They can be defined as artificial vesicles composed of one or more closed, concentric lipid (in general, phospholipid) bilayer membranes surrounding an aqueous core [195-199]. Conventional LP are formed spontaneously by dispersion of amphiphilic lipids (and cholesterol) in aqueous media, which, upon hydration, self-assemble to form bilayers surrounding an aqueous interior [200-202]. Because of its characteristic biphasic structure, LP can entrap both lipophilic and hydrophilic drugs [196, 199, 202-204]. The size of LP vary widely [195, 196], but to be considered as a nano-liposome, it must be below 1000 nm. These nanocarriers can be classified in terms of their size, the number of concentric bilayers (lamellae), and the composition and physical properties of the lipids used in their formulation [199, 205, 206]. LP are generally composed from naturally occurring phospholipids, cholesterol, sphingolipids and long chain fatty acids among others, so they are readily biodegradable [201, 207]. Besides, a wide variety of phospholipids (synthetic or natural) can be used, and it is possible to change the LP size, charge, and surface properties by adding new ingredients to the lipid mixture [195]. This allows designing LP which provide control over certain important properties for drug delivery such as elimination half-lives, permeability, biodistribution and targeting specificity [200, 208]. For example, the stability of the membrane bilayer as well as the retention of encapsulated drugs depend on the lipid composition and cholesterol content of the liposomal membranes [203].

LP have been used to encapsulate and deliver chemotherapeutics drugs for more than three decades now, and currently they are extensively researched as potential vectors for gene therapy. The first nanoscale delivery system that received, in 1995, clinical approval for the treatment of acquired immune deficiency syndrome (AIDS)-related Kaposi's sarcoma was a Dox hydrochloride (Dox-HCI) liposomal injection (Caelyx in Europe, Doxil in the USA) [209, 210]. Since then, other liposomal formulations have entered the market such as DaunoXome[™] (daunorubicin citrate in LP from Diatos, France) for advanced AIDS-related Kaposi's sarcoma and AmBisome[™] (amphotericin B in LP from Gilead Sciences, USA) for fungal infections [197].

Currently, most traditional anticancer drugs have been encapsulated into LP using different technologies and many of them have entered clinical trials, indicating that this is a fast developing field [200].

Despite the great advantages offered by the LP, there are still some important drawbacks related to the organic solvents used in their manufacturing process, instability in biological fluids and in aqueous solutions, poor batch-to-batch reproducibility and difficulties in their sterilization [211, 212]. In the search for other LN, NLC and SLN have been developed and used as parenteral drug delivery systems, mainly in cancer chemotherapy [213, 214].

The SLN were developed in the middle of the 1990s, by replacing the oil of an oil-in-water nanoemulsion by a solid lipid or a blend of solid lipids [215]. The use of solid lipids instead of oils follows the idea of achieving more control over drug release, since the drug molecule mobility in a solid matrix should be intuitively lower compared with an oily phase [194]. The diameter of SLN ranges between 50 and 1000 nm [216], large-scale manufacturing is possible (while other systems such as polymeric NP have faced scaling-up issues) and solvent use can be avoided using high-pressure homogenization with extant machinery [193, 194, 217]. The drawbacks to the use of SLN come from the formation of a highly ordered, perfect lipid crystal matrix, which limits their loading capacity [218]. After preparation, at least some of the particles crystallize in higher energy modifications that, during storage, evolve to a low energy modification that leads to drug expulsion [193].

In order to solve these limitations, a second generation of LN, NLC, has been developed by blending the solid lipids in SLN with oils, which provides a less-ordered (and even amorphous) solid lipid matrix, so that the active ingredient load can be increased and the expulsion of the drugs during storage avoided [193, 194, 216, 219, 220]. Different types of NLC can be obtained depending on the method of production and the composition of the lipids blend: imperfect, amorphous and multiple type. In the imperfect type, lipid crystallization is altered by small amounts of oils. In the amorphous type, the lipid matrix is solid but not crystalline (amorphous state): this can be achieved by mixing specific lipids, for example, hydroxyoctacosanyl hydroxystearate and isopropyl myristate. In the multiple type, the solid lipid matrix contains tiny oil compartments: they are obtained by mixing a solid lipid with a higher amount of oil [219].

5.1. Triggerable LN

As said before, an important requirement for effective drug delivery is the precise spatial and temporal release of therapeutic agents at the target site. For this purpose, stimuli-responsive (or stimulitriggered or smart) LP have been conceived. Various triggering mechanisms have been described in the literature, including those that rely on changes in local microenvironment such as decreased pH [221, 222] and the presence of specific enzymes [223], as well as the use of externally applied triggers such as light ultrasound [225] and heat [226, 227]. [224], Electromagnetic radiation-sensitive LP present a promising system and rely on strategically designed phospholipid molecules to initiate light-induced release [224]. The principles of phototriggering include photopolymerization of lipids, photosensitization by membrane anchored hydrophobic probes. photoisomerization of photoreactive lipids [228, 229].

A novel class of photo-triggerable LP prepared from dipalmitoyl phosphatidylcholine (DPPC) and photopolymerizable phospholipid, (1,2 bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC_{8.9}PC), which efficiently release entrapped calcein (a water soluble fluorescent dye) upon UV (254 nm) treatment has been recently developed [230]. photopolymerizable diacetylene phospholipid DC_{8.9}PC is present in lower organisms [231] and, due to the highly reactive diacetylene groups uniquely assembled in the lipid bilayer, photopolymerization by UV treatment results in chains of covalently linked lipid molecules within the bilayer [232]. To date, various photo-triggerable liposome formulations are described in literature as candidates for localized drug delivery, however, none of these studies have demonstrated light-triggered delivery of cytotoxic agents to improve cell killing. The work of Yavlovich et al. [233] demonstrates that the light-triggered release of an anticancer agent (Dox) from light-sensitive DPPC:DC_{8.9}PC:DSPE-PEG2000 (containing at 86:10:04 molar ratio) promotes Raji (a B-lymphocyte cell line) and MCF-7 cell killing compared to untreated samples. However, these LP are only targeted by the EPR effect, so an improvement can be envisioned by integrating them with active targeting strategies as already commented in section 2.1.

Yuba et al. [234] developed highly pH-sensitive LP for the delivery of antigenic molecules (ovalbumin, OVA) into cytosol. Remarkably, the authors rely on a combination of materials, in this case, polymer-

modified LP. pH-sensitive fusogenic polymers which confer fusion ability under weakly acidic conditions, were developed by carboxylation of poly(glycidol)s, which are known to be highly biocompatible [235], with acid anhydrides of various kinds [236-238]. The surface modification of stable egg volk phosphatidylcholine (EYPC)/DOPE LP with 3-methylglutarylated poly(glycidol) of linear (MGlu-LPG) or hyperbranched (MGlu-HPG) structure [237] can provide pH-sensitive destabilizing properties. These polymer-modified LP are stable at neutral pH, but they become strongly destabilized below pH 6, which corresponds to the pH of endosomes. The polymer-modified LP loaded with OVA were taken up by murine dendritic cells (DCs) more efficiently than the unmodified LP. Administration of these LP loaded with OVA into mice bearing E.G7-OVA tumor (which is a chicken egg OVA genetransfected clone of EL4, a C57BL/6 mice-derived T lymphoma, and which presents OVA with MHC class I molecules) induced strong OVA-specific cellular immune responses sufficient to entirely reject the engraftment of OVA-expressing tumor cells, and even established tumor burdens of the mice were completely eliminated by immunization with the polymer-modified LP. These highly pH-sensitive polymer-modified LP are extremely effective for the induction of antigen-specific immunity. Therefore, they are promising for use as antigen delivery systems for efficient cancer immunotherapy.

Cationic LP have the capability of facilitating the tumor cellular uptake by electrostatic absorptive endocytosis [239, 240], since many cancer cell membranes possess an overall negative charge resulting from the presence of sialic acid and proteoglycans. Besides, cationic LP tend to fuse with the endosomal/lysosomal membrane under the presence of specific lipids for membrane fusion, thus releasing their contents into the cytoplasm [241-243], or producing a proton sponge effect similar to PEI, which in turns leads to the swelling and disruption of the endosomes/lysosomes for cytoplasmic liberation of the intact LP [244, 245].

Despite these advantages, positively charged NP cause severe cytotoxicity, serum inhibition and a rapid clearance from the reticulo-endothelial system (RES) as a result of aggregation with plasma proteins [246]. Introduction of a PEG-modified lipid (PEG-lipid) into the cationic liposomal membrane is a common approach for application of cationic LP *in vivo*, which partially diminishes the net surface charge and the interaction with opsonin, thus increasing the circulation time. LP

functionalized with a PEG deshielding mechanism introduced by a degradable pH-sensitive bond between PEG and lipid (such as hydrazone bonds) have been studied [247-249], as anticipated in the introduction. Obata *et al.* developed a pH-responsive LP containing synthetic glutamic acid-based zwitterionic lipids, which can quickly change surface charge from negative to positive at endosomal/lysosomal pH (pHi, pH 4.0-6.0), producing efficient release of drugs into the cytoplasm [250]. However, these LP still present negative charge at tumor microenvironmental pH (pHe, pH 6.0-7.0) and had no effect on subcellular targeting.

In order to integrate the merits of anionic LP for lower hematotoxicity, PEGylated LP for longer circulation in the blood, and cationic LP for enhanced uptake at the tumor site and efficient intracellular delivery in the tumor cells, Mo et al. have studied pHsensitive zwitterionic oligopeptide LP [221, 251]. In their last work, the pH-sensitive LP developed were based on two synthetic amino acid-based lipids, 1,5dioctadecyl-L-glutamyl 2-histidyl- hexahydrobenzoic (HHG2C18) 1,5-distearyl N-(N- α -(4acid and mPEG2000) butanedione)-histidyl-L-glutamate (PEGHG2C18), which have a multistage pH-response to pHe and pHi successively [221]. Therefore, two types of pH-sensitive LP were developed and evaluated for effective intracellular delivery and enhanced antitumor activity: HHG2C18-L. which contains only HHG2C18, and PEGHG2C18-L, which includes both HHG2C18 and PEGHG2C18. Both of them have the capability of charge conversion in response to the surrounding pH, achieving increased tumor cellular uptake at pHe, and the effect on endosomal/lysosomal escape and mitochondrial targeting for enhanced antiproliferation and apoptosis (Figure 4). In particular, both LP loaded with temsirolimus (CCI-779) had significantly higher antiproliferative and apoptosis-inducing effect on the human renal carcinoma (A498) cells. In vivo, CCI-779/PEGHG2C18-L displayed higher blood persistence and antitumor efficacy against xenograft renal cancer (Renca) tumor models in comparison with CCI-779/HHG2C18-L.

Cell-penetrating peptides (CPPs) that facilitate the cellular uptake of various cargos without causing any cellular injury have been widely investigated in the fields of gene and drug delivery for cancer therapy [252-254]. Specially, pH-responsive CPPs [255-257] have been developed based on the pH gradient between the tumor milieu and physiological environment [258]. Unfortunately, recent studies have

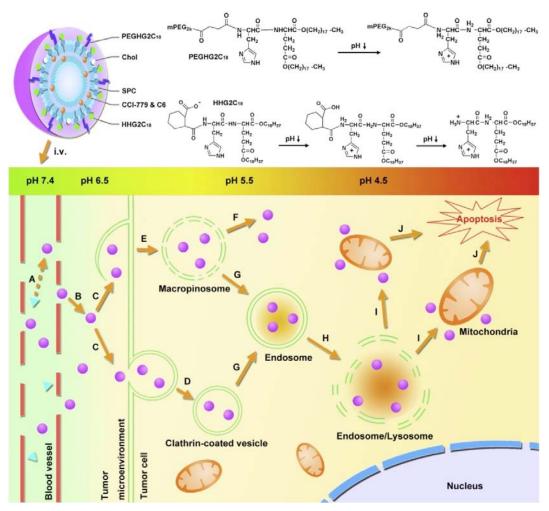


Figure 4: Scheme of the mechanism of action proposed for the PEGylated zwitterionic oligopeptide LP (PEGHG2C18-L), composed of soy phosphatidycholine (SPC), cholesterol (Chol) and two synthesized amino acid-based zwitterionic lipids (PEGHG2C18 and HHG2C18). PEGHG2C18 and HHG2C18 can respond to tumor extracellular and intracellular pH to endure PEGHG2C18-L with efficient intracellular delivery and enhanced antitumor efficacy. (A) The PEG outer corona and negatively charged surface provide a good protection for LP (spheres) away from the attack of plasma proteins (triangles) in the blood. (B) Targeting of LP through EPR effect. (C) Charge conversion from negative to positive for enhanced cellular uptake at tumor pH. (D) Clathrin-mediated endocytosis. (E) Macropinocytosis. (F) Leakage of LP from the porous macropinosomes. (G) Delivery to endosomes. (H) Endosomal/Lysosomal escape as a result of the proton sponge effect. (I) Cytoplasmic liberation and subsequent mitochondrial targeting. (J) Promotion of cell death *via* mitochondrial apoptotic pathway. *Reprinted with permission from Mo et al.* Intracellular delivery and antitumor effects of pH-sensitive liposomes based on zwitterionic oligopeptide lipids. Biomaterials 2013; 34: 2773-86, Copyright 2013 Elsevier.

suggested that CPPs on the surface of LP and micelles are susceptible to enzymatic cleavage by enzymes present in human plasma [259]. To address this dilemma, surface hyaluronic acid (HA) coating of CPP-modified LP (HA-CPP-LP) was used since HA with negative charge in neutral pH condition can be easily adsorbed on the surface of cationic LP [260-262]. HA is generally regarded as non-toxic and biodegradable, and overexpression of HA-binding receptors, such as CD44 and RHAMM, has been found on the cell surface of several malignant tumors [263-265], which explains the broad applications of HA-based polymers in active tumor targeting for anticancer drugs [266-268]. More importantly, hyaluronidase (HAase) is widely distributed

in the acidic tumor extracellular matrix, playing a significant role in tumor growth, invasion and metastasis [269, 270]. HA is susceptible to hydrolysis by HAase, allowing exposure of CPPs in HA-CPP-LP to facilitate effective admission of LP into the tumor cells.

In order to combine the advantages of pH-responsive CPPs for efficient intracellular delivery and HA for both improved blood persistence and tumor targeting, Jiang et al. [271] developed dual-functional LP with pH-responsive CPPs and active targeting HA. In fact, after HAase treatment, paclitaxel-loaded HA-CPP-LP presented a remarkably stronger cytotoxicity

toward the hepatic cancer HepG2 cells at pH 6.4 relative to the cytotoxicity at pH 7.4. The LP showed efficient intracellular trafficking including endosomal/lysosomal escape and cytoplasmic liberation and stronger antitumor efficacy against murine hepatic carcinoma (Heps) tumor xenograft models *in vivo*.

Drug-loaded microbubbles (MB) in combination with therapeutic ultrasound (US) have also become a promising therapeutic approach for drug delivery to treat malignant tumors [272]. Drugs can either be incorporated into the MB shell by hydrophobic or electrostatic interactions [273, 274] and they are released by insonation with high-intensity focused US. Currently, the limited drug-loading capacity of MB with lipid monolayer shells presents a major drawback to this therapeutic strategy [275]. One solution may be the of US-triggered recent introduction liposomemicrobubble complexes (LMC). There have been several reports of efficient in vitro controlled drug delivery by US-triggered LMC [276]. Yan et al. [277] developed paclitaxel-LMC (PLMC) as possible UStriggered targeted chemotherapy against breast cancer. PLMC were conjugated to the MB surface through biotin-avidin linkage, increasing the drugloading efficiency of MB. Significantly increased release of payloads from LMC was achieved upon US exposure. and significant increase drug concentration in tumors was observed in comparison to treatment with non-conjugated paclitaxel-LP or PLMC without US. In fact, fluorescent quantum dots (QDs) were used as a model drug to show that released QDs were taken up by 4T1 breast cancer cells treated with QD-LMC and US. Uptake was dependent on the exposure time and intensity of insonication. PLMC possessed significantly greater tumor growth inhibition effect both in vitro and in vivo.

Limitations of adenoviral (Ad) vectors for cancer gene therapy could be overcome by their combination with pharmaceutical technologies. Anionic LP (AL) significantly boosted the transduction efficiency of Ad in numerous cells such as LLC, B16, A549 and MDCK, and exhibited low cytotoxicity compared with cationic LP. Moreover, the AL-Ad vectors (AL-Ad) have demonstrated to confer some protection from neutralizing antibodies. However, the system lacked selectivity and specificity, and it could be completely inactivated in the presence of high titers of antiadenovirus antibody *in vitro*. Therefore, the previously reported AL-Ad formulations were administered to tumor bearing mice by intratumor injections rather than

intravenous injections [239, 240, 278]. Recently, matrix metalloproteases (MMPs) have attracted much attention owing to their ability to degrade the extracellular matrix (ECM), which is involved in the angiogenesis, invasion and metastasis of malignant tumors. In particular, type IV collagenases (MMP-2 and MMP-9) have been reported to play vital roles in this process [244], and the expression levels of MMPs were found to be relatively high in tumor cells compared to non-malignant cells. On the basis of these findings, Wan et al. [279] designed an enzymatically cleavable PEG-lipid material that was composed of a PEG/matrix metalloproteinase (MMP)-substrate peptide/cholesterol (PEG-peptide-chol, PPC) and is specifically cleaved by MMPs in the extracellular space in tumor tissues. The obtained MMP-cleavable lipids were inserted into the AL-Ad by the post-insertion method. The results of in vitro infection assays indicated that the enzymatically cleavable formulation (PPC-AL-Ad) displayed a much higher gene expression than both the naked Ad and a non-cleavable one. More importantly, PPC-AL-Ad induces a lower production of neutralizing antibodies and lower innate immune response; it also showed reduced liver toxicity in vivo on specific pathogen-free C57BL/6N mice. These findings suggest that PPC-AL-Ad is a promising system for gene delivery in tumor therapy.

Heat is another trigger actively investigated for controlled drug release. Thermosensitive LP (TLP) have become a very attractive vehicle for drug delivery applications [280-282]. Cargo drugs are released when the environmental temperature is above the membrane melting temperature (Tm) of TLP, which is tunable [281, 283]. The stability and release efficiency are among the main concerns for developing new TLP. Fe₃O₄ magnetic NP are also widely applied for molecular imaging, drug/gene delivery and drug removal due to magnetic and/or magnetocaloric effects [284-286]. Ding et al. [287] reported a combination of these two stimuli-responsive approaches by developing PEGylated thermosensitive magnetic LP (TMLP) entrapping oleic acid-coated Fe₃O₄ magnetic NP. TMLP were stable and impermeable at body temperature and the tested drugs (5-(and-6)carboxylfluorescein and Dox) were released within 1 h at 42 °C.

5.2. LN to Overcome the Multi-Drug Resistance Profile of Cancer Cells

Multi-drug resistance (MDR) is a serious obstacle in cancer treatment. In recent years, nanocarriers have

been explored for the potential to overcome tumor resistance and LP, in particular, are one of the most extensively studied systems. Various gene-silencing tools that specifically inhibit the expression of target genes have been developed, such as antisense oligonucleotides (ASOs) and short interfering RNA. Several ASOs targeting genes involved in neoplastic progression have been evaluated as potential therapeutic agents [288, 289]. Once the cancer cells have developed two major mechanisms of resistance to the chemotherapeutic treatment, namely pump and nonpump resistances, a rational antisense strategy involves targeting more than one oncogene or resistance-related gene simultaneously. P-glycoprotein (P-gp), Multidrug Resistance Protein MRP1, and MRP2 are three major ABC transporter proteins responsible for pump resistance, whereas BCL-2 and BCL-xL are well characterized as mediators of nonpump resistance for a wide variety of apoptotic stimuli [290-293]. Moreover, bispecific ASOs targeting a region of high homology shared by BCL-2 and BCL-xL as a suppressor of nonpump resistance induce apoptotic cell death in various tumor cells [294, 295]. In this sense, Lo et al. [296] developed PEGylated cationic LP loaded with epirubicin (Epi), and/or ASOs targeting MDR-associated protein (MDR1), MRP1, MRP2, and BCL-2/BCL-xL. Pegylated positively charged LP remarkably enhance the cytotoxicity of Epi on mouse colon adenocarcinoma CT26 cells. The liposomal Epi and ASOs (Epi-ASOs-LP) significantly increase the accumulation of Epi in CT26 murine colon carcinoma cells, indicating that pump resistance is effectively reversed. Epi-ASOs-LP have also demonstrated substantial improvements in tumor growth inhibition and survival percentage in CT26-bearing Balb/c mice in vivo. This pioneering study demonstrates that Epi-ASOs-LP targeting both pump and nonpump resistances increase antitumor efficacy in vivo through the simultaneous inhibition of MDR transporters and apoptosis induction.

5.3. Subcellular Targeting

Besides targeting specific cells or tissues, recent research on targeted nanosystems also explores subcellular targeting. It is believed that mitochondrial targeting may enhance efficiency and specificity of anticancer drugs for cancer treatment [297], since mitochondria, the powerhouses of the cells, are also implicated in the regulation of cellular differentiation and growth as well as programmed cell death, especially in tumor cells [298].

Zhou et al. synthesized a D-α-tocopheryl polyethylene glycol 1000 succinate-triphenylphosphine conjugate (TPGS1000-TPP) as a mitochondrial targeting molecule, which was incorporated onto the surface of paclitaxel LP to treat drug-resistant lung Triphenylphosphine (TPP) [299]. delocalized lipophilic cation with the ability to transport across mitochondrial membranes [300]. It has been reported that TPP can accumulate into highly negatively charged mitochondria of cells, including the ones in cancer cells [301, 302]. The system was tested on human lung cancer A549 cells, drug-resistant lung cancer A549/cDDP cells, and on the drug-resistant lung cancer A549/cDDP cells xenografted nude mice. In comparison with TaxolTM and regular paclitaxel LP, the targeting paclitaxel LP exhibited the strongest anticancer efficacy in vitro as well as in the drugresistant A549/cDDP xenografted tumor model. The targeting paclitaxel LP were selectively accumulated into the mitochondria, and enhanced apoptosis by acting on the mitochondrial signaling pathways.

Malhi et al. developed a similar strategy, based on the delivery of redox cycler-Dox to the mitochondria of cancer cells, where it acts as a source of exogenous ROS production [303]. Cancer cells present higher levels of ROS in comparison to the normal cells [304, 305], thus being more vulnerable to further oxidative stress induced by exogenous ROS-generating agents [306] known as 'Redox Cyclers' [307]. Dox is an example of redox cycler agent [308]. Under this idea, the purpose of the authors was to perform surface modifications of LP with dual ligands, FA for cancer cell targeting and TPP cations for mitochondria targeting, resulting on a FA-TPP-LP. The cytotoxicity, ROS production and cellular uptake of Dox loaded LP were evaluated in FR (+) KB cells and found to be considerably increased with FA-LP. As confirmed by confocal microscopy, the TPP-LP delivered Dox to mitochondria of cancer cells and also showed higher ROS production and cytotoxicity in comparison to FA-LP and non-targeted LP. Most importantly, FA-TPP-LP showed superior activity over mitochondria targeted LP, which confirms the synergistic effect imparted by the presence of dual ligands on the enhancement of cellular and mitochondrial delivery of Dox in KB cells.

5.4. Brain Targeting

Brain delivery of drugs is frequently impaired by the presence of the BBB, a physical and biochemical barrier that regulates drug transference between the blood and the central nervous system. A number of recent reports present SLN successfully targeting the brain, and thus potentially useful in the delivery of chemotherapeutic agents to brain tumors.

The work of Agarwal et al. [309] introduces SLN surface engineered with cationic bovine serum albumin (CBSA) as vectors to bypass the BBB and provide improved therapeutic efficacy of encapsulated anticancer drug methotrexate (MTX). CBSA shows good accumulation in the brain and preferential distribution in brain tissue compared to other organs like liver, heart and lung [310-312]. This ligand promotes transport of fluorescent probes across the BBB, apparently undergoing transcytosis-mediated absorption [313, 314]. Hemolytic studies on the CBSA-SLN from Agarwal et al. suggested that the formulation is biocompatible. A transendothelial transport study on brain capillary endothelial cells (BCs) confirmed that CBSA-SLN are up-taken through transcytosis. The CBSA-SLN increases the uptake of MTX by human neuroglial culture HNGC1 tumor cells compared to unconjugated SLN and free MTX, exhibiting a more potent cytotoxic effect than free MTX.

Venishetty *et al.* [315] presented surface modified SLN for combined therapy with docetaxel and ketoconazole. Even though docetaxel inhibitory effect on cancer cells is potentiated when administered with ketoconazole, potential drug-drug interactions between these two drugs may result from the fact that both agents are hepatically metabolized by the cytochrome P-450 system [316, 317], while ketoconazole can also

inhibit P-gp efflux of docetaxel at the BBB [318]. Plasma and brain pharmacokinetics have shown increased brain uptake of docetaxel with surface-modified dual drug-loaded SLN. Brain permeation coefficient of folate-grafted docetaxel and ketoconazole loaded SLN was higher than that of TaxotereTM.

Liang have developed innovative Kuo and catanionic SLN (CASLNs) carrying carmustine (BCNU) and grafted with anti-epithelial growth factor receptor (anti-EGFR) antibody [319]. The catanionic microemulsion is a recently developed colloidal system containing a mixture of oppositely charged surfactants to form vesicles or micelles [320]. Anti-EGFR/BCNU-CASLN demonstrated an effective delivery of BCNU to human brain malignant glioblastoma U87MG cells and antiproliferative efficacy against the growth of human GBM U87MG cells. Moreover, the same authors tested the anti-EGFR-CASLN for encapsulation of Dox with good results [321].

5.5. Multifunctional LN

LP were the first nanopharmaceuticals introduced to market; thus they have reached a high level of development and optimization, which led to more than 2000 papers and 200 reviews published only in 2011 and many commercialized liposomal drugs for cancer therapy [322, 323]. Multifunctional liposomal nanocarriers (MLN, Figure 5) are at the top of the art and they have been intensively explored in the last years in order to combine in a single nanodevice a

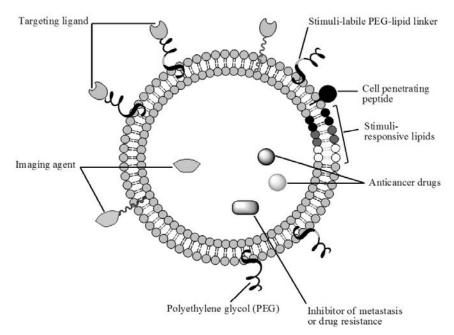


Figure 5: Scheme of a generic multifunctional liposomal nanocarrier (MLN).

number of desired features such as long blood circulation, high stability in vivo, high drug and/or imaging agent loading, selective distribution to the neoplasm lesion relative to healthy tissues, remotecontrolled or stimuli-sensitive extravasation, surface modifications enhance cell internalization. to intracellular payload release and even intracellular targeting to a specific organelle of the tumor cell [324].

Some of the works discussed in the previous subsections showed a diversity of examples of MLN, such as the pH-sensitive zwitterionic oligopeptide LP which combine higher blood persistence, capability of charge conversion in response to the surrounding pH and efficient intracellular delivery of the loaded drug(s) within the tumor cell; the dual-functional LP with pHresponsive CPPs and active HA-targeting which allow efficient intracellular delivery and enhanced tumor targeting; the PEGylated thermosensitive magnetic LP entrapping oleic acid-coated Fe₃O₄ magnetic NP and; the Epi and ASOs loaded PEGylated cationic LP which can target both pump and nonpump resistances increasing antitumor efficacy in vivo through the simultaneous inhibition of MDR transporters and apoptosis induction (see 5.1 and 5.2 subsections). In the following paragraphs we will briefly describe some other outstanding works in the field of MLN.

To provide a novel early diagnostic method and targeted therapy for pancreatic cancer, multifunctional nanoimmunoliposome with high loading of ultrasmall superparamagnetic iron oxides (USPIOs) and Dox, conjugated with anti-mesothelin monoclonal antibody to target anti-mesothelin-overexpressed pancreatic cancer cells was developed by Deng et al. [325]. The in vitro and in vivo properties of this antimesothelin antibody-conjugated PEGlyated liposomal and USPIOs (M-PLDU) and PEGlyated nanoimmunoliposomes without antibody conjugation (PLDU) were evaluated both in human pancreatic cancer cell line Panc-1 and in a pancreatic cancer xenograft animal model. The in vitro demonstrated that the M-PLDU possessed good MRI capability and significant inhibitory effect. The in vivo antitumor study demonstrated that compared with free Dox and PLDU, M-PLDU possessed higher inhibitory effect on tumor growth. The tissue distribution assay further proved that M-PLDUs could selectively accumulate in the tumor xenograft. These results indicated that M-PLDU not only retained the inherent MRI capability of USPIOs, but significantly improved the targeting distribution of USPIOs and therapeutic agents to pancreatic tumor tissues.

It has been pointed out that nitric oxide (NO) may function as a double-edged sword in cancer therapy, with relatively low concentrations promoting tumor growth and proliferation, and high concentrations of NO and other related reactive nitrogen species mediating cell apoptosis and inhibiting cancer cells growth [326-333]. NO also acts as a sensitizer leading to enhanced cell death when irradiating with y-radiation [334-336]. For therapeutic NO delivery, it is then critical to be able to control the concentration of NO released in the cell. With the intention of designing stimuli responsive NO releasing complexes for therapeutic applications, Ostrowski et al. developed the NO precursor trans-Cr(L)(ONO)2⁺ cyclam (L 1.4.8.11tetraazacyclotetradecane, CrONO, or L = mac = 5,7dimethyl-6-anthracenylcyclam, mac-CrONO) related compounds that release NO after irradiation with UV or visible light [337-341]. Photochemical triggering of such a "caged" bioactive agent provides the ability to control the timing, dosage, and location of the NO release by controlling the timing, intensity, and location of light irradiation, respectively [342, 343]. The most recent work of the group describes the development of CrONO complexes encapsulated in phosphatidylcholine LP [344]. The LP provide a mean to maintain a localized high concentration of NO releasing complexes and are easily modified for in vivo targeting. Encapsulated mac-CrONO showed NO release after photolysis with low-intensity blue light. Furthermore, the fluorescence of mac-CrONO allows for development of theranostic NO delivery vessels where tracking and imaging can occur simultaneously with therapeutic NO release.

The search on the MLN field includes the development of novel materials which allow improving the features of the MLN. For example, novel hydrazine functionalized PEG-phosphatidylethanolamine-based amphiphilic polymer have been developed by Biswas et al., which can conjugate the LP to a variety of ligands via a reversible pH-cleavable bond [345]. The work by Zhu et al. describes two novel functional polymers: TATp-PEG2000-1,2-dioctadecanovl-sn-glycero-3phosphoethanolamine (TATp-PEG2000-DSPE) and maleimide-PEG3400-MMP-2 cleavable peptide-1,2dioleoyl-sn-glycero-3phosphoethanolamine (MALPEG3400-peptide-DOPE) for surface modification of pharmaceutical nanocarriers [346]. By using these polymers, a novel multifunctional stimulus sensitive liposome was developed, which includes several functions: (i) passive tumor targeting by the EPR effect due to longevity imparted by long PEG chains; (ii)

prevention of the nonspecific intracellular uptake on the way to the tumor by steric shielding of surface-attached cell-penetrating function (TATp) moieties with the long-chain PEG; (iii) the active tumor targeting by a surface-attached cancer specific monoclonal antibody (mAb 2C5); (iv) the detachment of the long-chain PEG in the tumor due to the cleavage of the MMP-2-cleavable linker between the long chain PEG and the nanocarrier, resulting in the exposure of the cell-penetrating TATp; and (v) the enhanced cellular internalization by TATp-mediated endocytosis. Novel lipids to be applied in the development and optimization of multifunctional drug-carriers in order to modulate drug release and track lipid-based drug-carriers have been developed [347].

Other reports that deserve mentioning include the multifunctional HaT (Hyperthermia-activated-cytoToxic) thermosensitive liposome formulation consisting of 1,2dipalmitoyl-sn-glycero-3-phosphatidylcholine and Brij78 surfactant, that co-encapsulates Gd-DTPA (Gd-diethylene triamine pentaacetic acid, an MRI probe) and Dox for enhanced drug targeting to locally heated tumors and real-time monitoring of clinical response [348]; and a hybrid nanosystem consisting in cisplatin and quantum-dots loaded LP (QDLs) developed by Zhang et al. [349]. These cisplatin QDLs include CdSe or CdSe/ZnS QDs for both drug delivery and bioimaging and have demonstrated effective internalization, significant fluorescence and higher cytotoxic activity in melanoma cells compared to an equal dose of free cisplatin. As can be appreciated, the multifunctional systems have become the goal to pursue in the field of nanocarriers, with numerous attempts to combine the best features of different systems, materials and functionalities.

6. INORGANIC NANOSYSTEMS

Inorganic nanosystems are extensively investigated for imaging and therapeutic applications owing to their unique properties (e.g. optical and magnetic properties), which made them particularly suitable for diagnosing and monitoring applications, and for the design of stimuli-responsive nanovehicles. Some materials (such as gold) allow preparing highly monodisperse NP in a wide range of arrangements. The inert nature of materials such as silica or gold constitutes both bless and curse for bioapplications. In the light of the safety considerations briefly exposed at the beginning of section 5, the reader can imagine the important health concerns posed by a chemically and physically inert nanovehicle whose size exceeds the renal filtration threshold.

Among all nanosystems, inorganic NP are thus the ones that raise more safety concerns. Noteworthy, a study on the in vivo toxicity of gold NP showed that administration of 8 mg/kg/week of 8 to 37 nm particles produced, from day 14, severe side-effects such as camel-like back and crooked spine in mice [350]. Histological examination revealed various degrees of abnormality in the liver, lung and spleen of gold nanoparticle-treated mice. The median survival time was also significantly reduced. These important results underline the fact that in vitro assessment on a single cellular line may often not be representative of the behavior of the nanosystem in a whole organism, claiming for the development of complex cellular models and the unavoidable use of animal models. The previous study clearly states the cautions that should be taken regarding the clinical use of nanosystems as drug delivery devices, particularly if they are nonbiodegradable and in long-term treatment settings, and the need to develop standardized procedures to perform nanotoxicology studies [351, 352]. We will present a brief overview on three kind of inorganic nanosystems that have attracted increasing attention for the treatment of cancer: gold nanocarriers, magnetic NP and mesoporous silica NP, as well as the combination of these three systems (and the ones described in previous sections) to give nanocomposites that merge the properties of the separate materials and arrangements.

Gold NP join fascinating optical properties with their chemical inert nature, which creates a great number of potential applications in diagnostics and therapeutics. Metals can be represented as confined plasma of positive ions and mobile conduction electrons. An interacting electromagnetic field (e.g. light) can induce a coherent oscillation against the restoring force of positive nuclei. The collective oscillations of conduction electrons upon excitation with electromagnetic radiations are known as plasmons, which give rise to a strong absorption band attributed to resonance (surface plasmon resonance) between the oscillating electrons and the incident radiation. When conductive NP whose size is smaller than the wavelength of light are irradiated, a local surface plasmon resonance phenomenon that lies in the UV-vis range is observed [353-356]. Equally important, the frequency and intensity of the surface plasmon absorption bands are highly sensitive to NP composition, sizes, sizedistribution, geometry, morphology, surface coating, environment and separation distance. In other words, optical properties of metallic NP are tunable. Through

manipulation of those variables a band shift to even the infrared region can be achieved, which is interesting since biological tissues are transparent to this range of the electromagnetic spectrum [357]. The unique and customized optical properties make these systems ideal candidates for phototermal therapies (lightinduced plasmonic heating), photo-triggered controlled drug release and imaging purposes, as well as integrative diagnostics and therapeutics (theranostics). On the other hand, unlike fluorescent materials, gold experiences no photobleaching, while thiol-gold association allows for ready functionalization [353]. The aqueous synthesis of gold NP is well established (they can be easily prepared by reducing their salts in aqueous solutions) [354] and they can be easily adjusted to a desirable size between 0.8 and 200 nm [358].

Superparamagnetic NP are obtained by scaling ferromagnetic and ferrigmagnetic materials to nanosizes. In such small systems, the magnetic moment of the NP is free to fluctuate in response to thermal energy, while the individual atomic moments maintain their ordered state [359, 360]. In the absence of an external magnetic field, their magnetization appears to be in average zero. Under a magnetic field, however, they exhibit a magnetic signal far exceeding that of biomolecules and cells. What is more, under an alternating magnetic field, the magnetization of the superparamagnetic NP can be switched back and forth turning the NP into local heaters (magnetic fluid hyperthermia), which seems auspicious for cancer treatment. Evidently, targeted delivery application of an external, high-gradient magnetic field has also been proposed [358].

Mesoporous silica NP have attracted a lot of attention for controlled delivery applications. This can be explained by considering their particular properties [354, 361, 362]: they are chemically and physically stable (they are very stable against coagulation) and present a rigid framework; they show very uniform, tunable pore size (2-6 nm), which allows loading different drugs and studying the release kinetics with high precision; they have an enormous specific surface (up to more than 1000 m²/g) and large pore volume (more than 0.9 cm³/g), allowing high payloads; they can be readily functionalized via silylation and; they present a unique porous structure with no interconnectivity between them that minimizes the chance of premature drug release even in the case of nonperfect capping (in other systems such as dendrimers pore encapsulated guest molecules can leak through

the interconnected porous matrix when some of the pores are not capped).

6.1. Nanocomposites of Different Inorganic Or **Organic/Inorganic Materials**

As observed in other materials, recent progress on application of inorganic NP to cancer treatment emerges from juxtaposition of carriers and materials that were studied in a separate manner in the past years, allowing multifunctionality.

For example, Liu et al. have recently developed dendrimer stabilized gold-silver alloy NP [363]. The amine terminated G5 PAMAM dendrimers that provide colloidal stability to the metallic particles and augment their aqueous solubility were modified with FA to achieve active targeting.

Yang et al. reported a novel multifunctional nanocomposite where superparamagnetic Fe₃O₄ NP were fixed between a pH-sensitive polymer conjugated with FA, and a mesoporous silica NP core [364]. The silica core provides high drug loading capacity, while the pH-responsive polymer allows controlled release in the mildly acidic environment of cancer cells. The targeting process may be traced through the magnetic signal. Zhang et al. developed multifunctional silica NP capped with cleavable disulfide bonds bridged to amino- β -cyclodextrin [365]. The β -cyclodextrin strongly complexes PEG polymers functionalized adamantine and FA. The cleavable cyclodextrin capping retains the tested drug (Dox) inside the mesopores, preventing premature release. Once inside the cell, the acidic environment and the reduction of the disulfide bonds by high glutathione concentrations trigger the liberation of the active ingredient.

Ma et al. synthesized a multifunctional nanoplatform based on a Fe₃O₄ core surrounded by a mesoporous silica shell capped by gold nanorods (Figure 6) [366]. Such system integrates chemotherapy, magnetic resonance and IR imaging and photothermal therapy. Anticancer drugs can be efficiently loaded into the mesopores of the silica shell (an encapsulation of up to 30 wt% Dox was achieved). The system is practically inert at blood pH, but releases Dox in the acidic environment of cancer cells, in a pH-responsive way. In vitro and in vivo experiments confirmed the feasibility of using this platform in photothermal therapy under near IR irradiation, while in vitro experiments showed a synergistic effect of the combined chemo- and photothermotherapy between 39-42 °C, suggesting

Figure 6: Scheme of the nanoplatform introduced by Ma *et al.* Covalently gold linked nanorods cap the mesopores of the silica shell, which coats a superparamagnetic iron oxide core. *Reprinted with permission from Ma et al.* Au capped magnetic core/mesoporous silica shell NP for combined photothermo-/chemo-therapy and multimodal imaging. Biomaterials 2012; 33(3): 989-998, Copyright 2012 Elsevier.

tumoral cells may be damaged without affecting surrounding healthy tissue. Confocal fluorescence microscopic images confirmed that Dox was preferentially delivered to the nuclei of MCF-7 cells.

Shi et al. recently reported the design of a multifunctional magnetic and plasmonic nanocomposite [367], based on graphene oxide decorated with both iron oxide and gold, modified later with lipoid acidmodified PEG and FA modified PEG for molecular targeting. The effectivity of this platform for photothermal therapy was demonstrated both *in vitro* (KB and 4T1 cells, FA receptor+ and FA receptor-, respectively) and *in vivo* (BALB/c mice bearing 4T1 tumors).

The previously discussed examples clearly illustrate the possibilities of multifunctional systems, and the current tendency to integrate different nanoplatforms into more complex ones.

CONCLUSIONS

In this review we have discussed prominent nanosystems (overviewing their limitations and

advantages) and we have also presented a selection of what we believe are representative advances in the field of cancer nanotherapies.

The delivery anticancer agents (both conventional. small molecule-based, and nextgeneration, biomolecule-based therapies) through nanocarriers has shown significant advances in the last few years. Cancer diagnosis and treatment is, without hesitation, the field of medicine that has attracted more attention from the nanobiotechnology sector. This seems natural if one bears in mind that a critical point to successful chemotherapy is to maximize the exposure of the cancerous or tumoral cells to the active ingredient, while minimizing the exposure of healthy tissue. Furthermore, many anticancer agents present limitations related to either stability or solubility issues, which could be ameliorated by encapsulating the drugs in adequate vehicles.

The current tendency in the field of cancer nanotherapeutics seems to be the combination of strategies that have been tested or applied in a separate manner in the past. The first combination that

we have envisaged while reviewing recent literature in this field was the combination of different targeting strategies, e.g. different active targeting moieties have been introduced on a single nanocarrier or smart, stimuli-responsive systems have been improved through molecular targeting. The second combination relates to the development of multifunctional, complex nanoplatforms merging different separate nanosystems. These multifunctional systems join the advantages of the separate platforms, e.g. plasmonic NP, behavior of metallic MRI imaging superparamagnetic NP, high loading capacity mesoporous silica NP, or high and easy surface functionalization of dendrimers.

An issue that should be taken into consideration is the potential toxicity of those non-biodegradable nanosystems with sizes above the renal filtration threshold, whose final fate in the body has not been fully studied yet.

AKNOWLEDGEMENTS

We thank Elsevier for the permission to reproduce Figures 1-4 and 6. The authors would like to thanks UNLP and CONICET. C. L. Bellera, M. E. Gantner and M. E. Ruiz are fellowship holders from the National Council of Scientific and Technical Research (CONICET). A. Talevi is a member of the Scientific Research Career at CONICET. Alan Talevi and María E. Ruiz thank Incentivos UNLP.

REFERENCES

- [1] Smith DA, Di L, Kerns EH. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov 2010; 9: 929-39. http://dx.doi.org/10.1038/nrd3287
- [2] Ejendal KF, Hrycyna CA. Multidrug resistance and cancer: the role of the human ABC transporter ABCG2. Curr Protein Pept Sci 2002; 3: 503-11. http://dx.doi.org/10.2174/1389203023380521
- [3] Lage H, Dietel M. Effect of the breast-cancer resistance protein on atypical multidrug resistance. Lancet Oncol 2000; 1: 169-75. http://dx.doi.org/10.1016/S1470-2045(00)00032-2
- Marquez B, Van Bambeke F. ABC multidrug transporters: [4] target for modulation of drug pharmacokinetics and drugdrug interactions. Curr Drug Targets 2011; 12: 600-20. http://dx.doi.org/10.2174/138945011795378504
- Li S, Wang A, Jiang W, Guan Z. Pharmacokinetic [5] characteristics and anticancer effects of 5-fluorouracil loaded nanoparticles. BMC Cancer 2008; 8: 103. http://dx.doi.org/10.1186/1471-2407-8-103
- [6] Fassberg J, Stella VJ. A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogues. J Pharm Sci 1992; 81: 676-84. http://dx.doi.org/10.1002/jps.2600810718

- Storniolo AM, Allerheiligen SR, Pearce HL. Preclinical, [7] pharmacologic, and phase I studies of gemcitabine. Semin Oncol 1997; 24: 2-7.
- Sharma RA, Gescher AJ, Steward WP. Curcumin: the story [8] so far. Eur J Cancer 2005; 41: 1955-68. http://dx.doi.org/10.1016/j.ejca.2005.05.009
- Hennenfent KL, Govindan R. Novel formulations of taxanes: [9] a review. Old wine in a new bottle? Ann Oncol 2006; 17: 735http://dx.doi.org/10.1093/annonc/mdj100
- Li S, Huang S, Peng SB. Overexpression of G protein-[10] coupled receptors in cancer cells: involvement in tumor progression. Int J Oncol 2005; 27: 1329-39.
- [11] Reubi JC. Old and new peptide receptor targets in cancer: future directions. Recent Results Cancer Res 2013; 194: 567-76. http://dx.doi.org/10.1007/978-3-642-27994-2 34
- [12] Reubi JC. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 2003; 24: 389-427. http://dx.doi.org/10.1210/er.2002-0007
- Zhou XB, Qiu Z, Liu XX, Zhang J, He YY, Wang XM, et al. [13] The folate receptor a and Ovarian cancer. Chinese Journal of Pharmaceutical Biotechnology 2012; 19: 458-461.
- Hutchings CJ, Koglin M, Marshall FH. Therapeutic antibodies [14] directed at G protein-coupled receptors. MAbs 2010; 2: 594http://dx.doi.org/10.4161/mabs.2.6.13420
- Yu B, Tai HC, Xue W, Lee LJ, Lee RJ. Receptor-targeted [15] nanocarriers for therapeutic delivery to cancer. Mol Membr Biol 2010; 27: 286-98.
- http://dx.doi.org/10.3109/09687688.2010.521200
- [16] Chacko RT, Ventura J, Zhuang J, Thayumanavan S. Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Delivery Rev 2012; 64: 836-51. http://dx.doi.org/10.1016/j.addr.2012.02.002
- Maeda H. The enhanced permeability and retention (EPR) [17] effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001; 41: http://dx.doi.org/10.1016/S0065-2571(00)00013-3
- Maeda H. Macromolecular therapeutics in cancer treatment: [18] The EPR effect and beyond. J Control Release 2012; 164: http://dx.doi.org/10.1016/j.jconrel.2012.04.038
- [19] Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Delivery Rev 2013; 65: 71http://dx.doi.org/10.1016/j.addr.2012.10.002
- [20] Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 1999; 51: 691-743.
- Juliano RL. Factors affecting the clearance kinetics and [21] tissue distribution of liposomes, microspheres and emulsions. Adv Drug Delivery Rev 1988; 2: 31-54. http://dx.doi.org/10.1016/0169-409X(88)90004-X
- Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer [22] therapy and diagnosis. Adv Drug Delivery Rev 2012; 64, Supplement: 24-36. http://dx.doi.org/10.1016/j.addr.2012.09.006
- Rodrigues Jr JM, Fessi H, Bories C, Puisieux F, Devissaguet [23] Primaquine-loaded poly(lactide) nanoparticles: physicochemical study and acute tolerance in mice. Int J Pharm 1995; 126: 253-260. http://dx.doi.org/10.1016/0378-5173(95)04135-4

- [24] Bender AR, von Briesen H, Kreuter J, Duncan IB, Rubsamen-Waigmann H. Efficiency of nanoparticles as a carrier system for antiviral agents in human immunodeficiency virus-infected human monocytes/ macrophages in vitro. Antimicrob Agents Chemother 1996; 40: 1467-71.
- [25] Leroux J, Doelker E, Gurny R. The use of drug-loaded nanoparticles in cancer chemotherapy. In: Benita S, editors. Microencapsulation Methods and Industrial Applications. ed. New York: Marcel Dekker 1996; p. 535-575.
- [26] Bazile DV, Ropert C, Huve P, Verrecchia T, Marlard M, Frydman A, et al. Body distribution of fully biodegradable [14C]-poly(lactic acid) nanoparticles coated with albumin after parenteral administration to rats. Biomaterials 1992; 13: 1093-102. http://dx.doi.org/10.1016/0142-9612(92)90142-B
- [27] Olivier JC, Huertas R, Lee HJ, Calon F, Pardridge WM. Synthesis of pegylated immunonanoparticles. Pharm Res 2002; 19: 1137-43. http://dx.doi.org/10.1023/A:1019842024814
- [28] Verrecchia T, Spenlehauer G, Bazile DV, Murry-Brelier A, Archimbaud Y, Veillard M. Non-stealth (poly(lactic acid/albumin)) and stealth (poly(lactic acid-polyethylene glycol)) nanoparticles as injectable drug carriers. J Control Release 1995; 36: 49-61. http://dx.doi.org/10.1016/0168-3659(95)00053-B
- [29] Stolnik S, Illum L, Davis SS. Long circulating microparticulate drug carriers. Adv Drug Delivery Rev 1995; 16: 195-214. http://dx.doi.org/10.1016/0169-409X(95)00025-3
- [30] Storm G, Belliot SO, Daemen T, Lasic DD. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Delivery Rev 1995; 17: 31-48. http://dx.doi.org/10.1016/0169-409X(95)00039-A
- [31] Lee JH, Kopecek J, Andrade JD. Protein-resistant surfaces prepared by PEO-containing block copolymer surfactants. J Biomed Mater Res 1989; 23: 351-68. http://dx.doi.org/10.1002/jbm.820230306
- [32] Gomes-da-Silva LC, Fonseca NA, Moura V, Pedroso de Lima MC, Simoes S, Moreira JN. Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges. Acc Chem Res 2012; 45: 1163-71. http://dx.doi.org/10.1021/ar300048p
- [33] Matsumoto S, Christie RJ, Nishiyama N, Miyata K, Ishii A, Oba M, et al. Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery. Biomacromolecules 2009; 10: 119-27. http://dx.doi.org/10.1021/bm800985e
- [34] Nie Y, Gunther M, Gu Z, Wagner E. Pyridylhydrazone-based PEGylation for pH-reversible lipopolyplex shielding. Biomaterials 2011; 32: 858-69. http://dx.doi.org/10.1016/j.biomaterials.2010.09.032
- [35] Takae S, Miyata K, Oba M, Ishii T, Nishiyama N, Itaka K, et al. PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. J Am Chem Soc 2008; 130: 6001-9. http://dx.doi.org/10.1021/ja800336v
- [36] Yadav KS, Chuttani K, Mishra AK, Sawant KK. Effect of Size on the Biodistribution and Blood Clearance of Etoposide-Loaded PLGA Nanoparticles. PDA J Pharm Sci Technol 2011; 65: 131-9.
- [37] Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 2007; 65: 259-69. http://dx.doi.org/10.1016/j.ejpb.2006.11.009
- [38] Pathak Y, Thassu D. Drug delivery nanoparticles formulation and characterization. 1st ed. New York: Informa Healthcare

- [39] Gad SC. Pharmaceutical manufacturing handbook: production and processes. 1st ed. New Jersey: Wiley-Interscience 2008.
- [40] Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Delivery Rev 2004; 56: 1649-1659. http://dx.doi.org/10.1016/i.addr.2004.02.014
- [41] Liu L, Li C, Li X, Yuan Z, An Y, He B. Biodegradable polylactide/poly(ethylene glycol)/polylactide triblock copolymer micelles as anticancer drug carriers. J Appl Polym Sci 2001; 80: 1976-1982. http://dx.doi.org/10.1002/app.1295
- [42] Leslie EM, Deeley RG, Cole SPC. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 2005; 204: 216-237. http://dx.doi.org/10.1016/j.taap.2004.10.012
- [43] Semenas J, Allegrucci C, Boorjian SA, Mongan NP, Persson JL. Overcoming drug resistance and treating advanced prostate cancer. Curr Drug Targets 2012. http://dx.doi.org/10.2174/138945012802429615
- [44] Murray S, Briasoulis E, Linardou H, Bafaloukos D, Papadimitriou C. Taxane resistance in breast cancer: Mechanisms, predictive biomarkers and circumvention strategies. Cancer Treat Rev 2012; 38: 890-903. http://dx.doi.org/10.1016/j.ctrv.2012.02.011
- [45] Gu W, Ma Y, Zhu C, Chen B, Ma J, Gao H. Synthesis of cross-linked carboxyl poly(glycerol methacrylate) and its application for the controlled release of doxorubicin. Eur J Pharm Sci 2012; 47: 556-63. http://dx.doi.org/10.1016/j.ejps.2012.07.009
- [46] van Nostrum CF. Covalently cross-linked amphiphilic block copolymer micelles. Soft Matter 2011; 7: 3246-3259. http://dx.doi.org/10.1039/c0sm00999g
- [47] Lee H, Bae Y. Pharmaceutical differences between block copolymer self-assembled and cross-linked nanoassemblies as carriers for tunable drug release. Pharm Res 2012. http://dx.doi.org/10.1007/s11095-012-0893-3
- [48] Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med 2012; 63: 185-98. http://dx.doi.org/10.1146/annurev-med-040210-162544
- [49] Thassu D, Deleers M, Pathak Y. Nanoparticulate drug delivery systems. 1st ed. New York: Informa Healthcare 2007. http://dx.doi.org/10.1201/9781420008449
- [50] Torchilin VP. Nanoparticulates as drug carriers. 1st ed. London: Imperial College Press 2006.
- [51] Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res 2010; 62: 90-99. http://dx.doi.org/10.1016/j.phrs.2010.03.005
- [52] Hammady T, Rabanel J-M, Dhanikula RS, Leclair G, Hildgen P. Functionalized nanospheres loaded with anti-angiogenic drugs: Cellular uptake and angiosuppressive efficacy. Eur J Pharm Biopharm 2009; 72: 418-427. http://dx.doi.org/10.1016/j.ejpb.2009.01.007
- [53] Wuang SC, Neoh KG, Kang E-T, Pack DW, Leckband DE. HER-2-mediated endocytosis of magnetic nanospheres and the implications in cell targeting and particle magnetization. Biomaterials 2008; 29: 2270-2279. http://dx.doi.org/10.1016/j.biomaterials.2008.01.028
- [54] Kamen BA, Smith AK. A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. Adv Drug Delivery Rev 2004; 56: 1085-1097. http://dx.doi.org/10.1016/j.addr.2004.01.002
- [55] Garcia-Bennett A, Nees M, Fadeel B. In search of the Holy Grail: Folate-targeted nanoparticles for cancer therapy. Biochem Pharmacol 2011; 81: 976-984. http://dx.doi.org/10.1016/j.bcp.2011.01.023

- [56] Shen Z, Li Y, Kohama K, Oneill B, Bi J. Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres. Pharmacol Res 2011; 63: 51-58. http://dx.doi.org/10.1016/i.phrs.2010.10.012
- [57] Zhao P, Wang H, Yu M, Liao Z, Wang X, Zhang F, et al. Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: In vitro and in vivo evaluation. Eur J Pharm Biopharm 2012; 81: 248-256. http://dx.doi.org/10.1016/j.ejpb.2012.03.004
- [58] Saxena V, Naguib Y, Hussain MD. Folate receptor targeted 17-allylamino-17-demethoxygeldanamycin (17-AAG) loaded polymeric nanoparticles for breast cancer. Colloids Surf B Biointerfaces 2012; 94: 274-280. http://dx.doi.org/10.1016/j.colsurfb.2012.02.001
- [59] Liang X, Sun Y, Liu L, Ma X, Hu X, Fan J, et al. Folate-functionalized nanoparticles for controlled ergosta-4,6,8(14),22-tetraen-3-one delivery. Int J Pharm 2013; 441: 1-8. http://dx.doi.org/10.1016/j.iipharm.2012.12.018
- [60] Chen J, Li S, Shen Q. Folic acid and cell-penetrating peptide conjugated PLGA-PEG bifunctional nanoparticles for vincristine sulfate delivery. Eur J Pharm Sci 2012; 47: 430-443. http://dx.doi.org/10.1016/j.ejps.2012.07.002
- [61] Zhang L, Hou S, Mao S, Wei D, Song X, Lu Y. Uptake of folate-conjugated albumin nanoparticles to the SKOV3 cells. Int J Pharm 2004; 287: 155-162. http://dx.doi.org/10.1016/j.iipharm.2004.08.015
- [62] Ulbrich K, Michaelis M, Rothweiler F, Knobloch T, Sithisarn P, Cinatl J, et al. Interaction of folate-conjugated human serum albumin (HSA) nanoparticles with tumour cells. Int J Pharm 2011; 406: 128-134. http://dx.doi.org/10.1016/j.iipharm.2010.12.023
- [63] Cirstoiu-Hapca A, Buchegger F, Bossy L, Kosinski M, Gurny R, Delie F. Nanomedicines for active targeting: Physicochemical characterization of paclitaxel-loaded anti-HER2 immunonanoparticles and in vitro functional studies on target cells. Eur J Pharm Sci 2009; 38: 230-237. http://dx.doi.org/10.1016/j.ejps.2009.07.006
- [64] Colombo M, Corsi F, Foschi D, Mazzantini E, Mazzucchelli S, Morasso C, et al. HER2 targeting as a two-sided strategy for breast cancer diagnosis and treatment: Outlook and recent implications in nanomedical approaches. Pharmacol Res 2010; 62: 150-165. http://dx.doi.org/10.1016/j.phrs.2010.01.013
- [65] Arya G, Vandana M, Acharya S, Sahoo SK. Enhanced antiproliferative activity of Herceptin (HER2)-conjugated gemcitabine-loaded chitosan nanoparticle in pancreatic cancer therapy. Nanomedicine 2011; 7: 859-870. http://dx.doi.org/10.1016/j.nano.2011.03.009
- [66] Guo J, Gao X, Su L, Xia H, Gu G, Pang Z, et al. Aptamerfunctionalized PEG–PLGA nanoparticles for enhanced antiglioma drug delivery. Biomaterials 2011; 32: 8010-8020. http://dx.doi.org/10.1016/j.biomaterials.2011.07.004
- [67] Lee JH, Yigit MV, Mazumdar D, Lu Y. Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv Drug Delivery Rev 2010; 62: 592-605. http://dx.doi.org/10.1016/j.addr.2010.03.003
- [68] Min K, Jo H, Song K, Cho M, Chun Y-S, Jon S, *et al.* Dual-aptamer-based delivery vehicle of doxorubicin to both PSMA (+) and PSMA (-) prostate cancers. Biomaterials 2011; 32: 2124-2132. http://dx.doi.org/10.1016/j.biomaterials.2010.11.035
- [69] Tong R, Yala L, Fan TM, Cheng J. The formulation of aptamer-coated paclitaxel–polylactide nanoconjugates and their targeting to cancer cells. Biomaterials 2010; 31: 3043-3053. http://dx.doi.org/10.1016/j.biomaterials.2010.01.009

- [70] Shen J-M, Gao F-Y, Yin T, Zhang H-X, Ma M, Yang Y-J, et al. cRGD-functionalized polymeric magnetic nanoparticles as a dual-drug delivery system for safe targeted cancer therapy. Pharmacol Res 2013; 70: 102-115. http://dx.doi.org/10.1016/j.phrs.2013.01.009
- [71] Hu Q, Gu G, Liu Z, Jiang M, Kang T, Miao D, et al. F3 peptide-functionalized PEG-PLA nanoparticles co-administrated with tLyp-1 peptide for anti-glioma drug delivery. Biomaterials 2013; 34: 1135-1145. http://dx.doi.org/10.1016/j.biomaterials.2012.10.048
- [72] Xia H, Gao X, Gu G, Liu Z, Hu Q, Tu Y, et al. Penetratinfunctionalized PEG-PLA nanoparticles for brain drug delivery. Int J Pharm 2012; 436: 840-850. http://dx.doi.org/10.1016/j.iipharm.2012.07.029
- [73] Song Q, Yao L, Huang M, Hu Q, Lu Q, Wu B, et al. Mechanisms of transcellular transport of wheat germ agglutinin-functionalized polymeric nanoparticles in Caco-2 cells. Biomaterials 2012; 33: 6769-6782. http://dx.doi.org/10.1016/i.biomaterials.2012.05.066
- [74] Wen Z, Yan Z, Hu K, Pang Z, Cheng X, Guo L, et al. Odorranalectin-conjugated nanoparticles: Preparation, brain delivery and pharmacodynamic study on Parkinson's disease following intranasal administration. J Control Release 2011; 151: 131-138. http://dx.doi.org/10.1016/j.jconrel.2011.02.022
- [75] Frutos G, Prior-Cabanillas A, París R, Quijada-Garrido I. A novel controlled drug delivery system based on pHresponsive hydrogels included in soft gelatin capsules. Acta Biomater 2010; 6: 4650-4656. http://dx.doi.org/10.1016/j.actbio.2010.07.018
- [76] Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 2002; 7: 569-579. http://dx.doi.org/10.1016/S1359-6446(02)02255-9
- [77] Patil S, Chaudhury P, Clarizia L, McDonald M, Reynaud E, Gaines P, et al. Responsive hydrogels produced via organic sol–gel chemistry for cell culture applications. Acta Biomater 2012; 8: 2919-2931. http://dx.doi.org/10.1016/j.actbio.2012.04.040
- [78] Reis AV, Guilherme MR, Cavalcanti OA, Rubira AF, Muniz EC. Synthesis and characterization of pH-responsive hydrogels based on chemically modified Arabic gum polysaccharide. Polymer 2006; 47: 2023-2029. http://dx.doi.org/10.1016/ji.polymer.2006.01.058
- [79] Huynh CT, Nguyen MK, Lee DS. Biodegradable pH/temperature-sensitive oligo(β-amino ester urethane) hydrogels for controlled release of doxorubicin. Acta Biomater 2011; 7: 3123-3130. http://dx.doi.org/10.1016/j.actbio.2011.05.004
- [80] Zhang J-T, Bhat R, Jandt KD. Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomater 2009; 5: 488-497. http://dx.doi.org/10.1016/ji.actbio.2008.06.012
- [81] Zhao Z, Li Z, Xia Q, Xi H, Lin Y. Fast synthesis of temperature-sensitive PNIPAAm hydrogels by microwave irradiation. Eur Polym J 2008; 44: 1217-1224. http://dx.doi.org/10.1016/j.eurpolymj.2008.01.014
- [82] Ejaz M, Yu H, Yan Y, Blake DA, Ayyala RS, Grayson SM. Evaluation of redox-responsive disulfide cross-linked poly(hydroxyethyl methacrylate) hydrogels. Polymer 2011; 52: 5262-5270. http://dx.doi.org/10.1016/j.polymer.2011.09.018
- [83] Oh JK, Siegwart DJ, Lee H-i, Sherwood G, Peteanu L, Hollinger JO, et al. Biodegradable Nanogels Prepared by Atom Transfer Radical Polymerization as Potential Drug Delivery Carriers: Synthesis, Biodegradation, in vitro Release, and Bioconjugation. J Am Chem Soc 2007; 129: 5939-5945. http://dx.doi.org/10.1021/ja069150l

- [84] Casolaro M, Casolaro I, Lamponi S. Stimuli-responsive hydrogels for controlled pilocarpine ocular delivery. Eur J Pharm Biopharm 2012; 80: 553-561. http://dx.doi.org/10.1016/j.ejpb.2011.11.013
- [85] Li H, Yew YK. Simulation of soft smart hydrogels responsive to pH stimulus: Ionic strength effect and case studies. Materials Science and Engineering: C 2009; 29: 2261-2269. http://dx.doi.org/10.1016/j.msec.2009.05.011
- [86] Chen J, Li H, Lam KY. Transient simulation for kinetic responsive behaviors of electric-sensitive hydrogels subject to applied electric field. Materials Science and Engineering: C 2005; 25: 710-712. http://dx.doi.org/10.1016/j.msec.2005.06.020
- [87] Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Delivery Rev 2012; 64, Supplement: 49-60. http://dx.doi.org/10.1016/j.addr.2012.09.024
- [88] Liu H, Wang C, Gao Q, Liu X, Tong Z. Magnetic hydrogels with supracolloidal structures prepared by suspension polymerization stabilized by Fe2O3 nanoparticles. Acta Biomater 2010; 6: 275-281. http://dx.doi.org/10.1016/j.actbio.2009.06.018
- [89] Wang Y, Dong A, Yuan Z, Chen D. Fabrication and characterization of temperature-, pH- and magnetic-fieldsensitive organic/inorganic hybrid poly (ethylene glycol)based hydrogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012; 415: 68-76. http://dx.doi.org/10.1016/j.colsurfa.2012.10.009
- [90] Cheng R, Meng F, Deng C, Klok H-A, Zhong Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 2013; 34: 3647-3657. http://dx.doi.org/10.1016/j.biomaterials.2013.01.084
- [91] Fleige E, Quadir MA, Haag R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv Drug Delivery Rev 2012; 64: 866-884. http://dx.doi.org/10.1016/j.addr.2012.01.020
- [92] Motornov M, Roiter Y, Tokarev I, Minko S. Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci 2010; 35: 174-211. http://dx.doi.org/10.1016/i.progpolymsci.2009.10.004
- [93] Toti US, Guru BR, Grill AE, Panyam J. Interfacial activity assisted surface functionalization: A novel approach to incorporate maleimide functional groups and cRGD peptide on polymeric nanoparticles for targeted drug delivery. Mol Pharm 2010; 7: 1108-1117. http://dx.doi.org/10.1021/mp900284c
- [94] Lieb E, Hacker M, Tessmar J, Kunz-Schughart LA, Fiedler J, Dahmen C, et al. Mediating specific cell adhesion to lowadhesive diblock copolymers by instant modification with cyclic RGD peptides. Biomaterials 2005; 26: 2333-2341. http://dx.doi.org/10.1016/j.biomaterials.2004.07.010
- [95] Cho HS, Dong Z, Pauletti GM, Zhang J, Xu H, Gu H, et al. Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging: A multifunctional nanocarrier system for cancer diagnosis and treatment. ACS Nano 2010; 4: 5398-5404. http://dx.doi.org/10.1021/nn101000e
- [96] Khoee S, Rahmatolahzadeh R. Synthesis and characterization of pH-responsive and folated nanoparticles based on self-assembled brush-like PLGA/PEG/AEMA copolymer with targeted cancer therapy properties: A comprehensive kinetic study. Eur J Med Chem 2012; 50: 416-427. http://dx.doi.org/10.1016/j.ejmech.2012.02.027
- [97] Sahu SK, Maiti S, Pramanik A, Ghosh SK, Pramanik P. Controlling the thickness of polymeric shell on magnetic nanoparticles loaded with doxorubicin for targeted delivery

- and MRI contrast agent. Carbohydr Polym 2012; 87: 2593-2604.
- http://dx.doi.org/10.1016/j.carbpol.2011.11.033
- [98] Kim JH, Li Y, Kim MS, Kang SW, Jeong JH, Lee DS. Synthesis and evaluation of biotin-conjugated pH-responsive polymeric micelles as drug carriers. Int J Pharm 2012; 427: 435-442. http://dx.doi.org/10.1016/j.ijpharm.2012.01.034
- [99] K CR, Thapa B, Xu P. pH and redox dual responsive nanoparticle for nuclear targeted drug delivery. Mol Pharm 2012; 9: 2719-29. http://dx.doi.org/10.1021/mp300274g
- [100] Deng Z, Zhen Z, Hu X, Wu S, Xu Z, Chu PK. Hollow chitosan-silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials 2011; 32: 4976-86.
 - http://dx.doi.org/10.1016/j.biomaterials.2011.03.050
- [101] Zhao M, Hu B, Gu Z, Joo K-I, Wang P, Tang Y. Degradable polymeric nanocapsule for efficient intracellular delivery of a high molecular weight tumor-selective protein complex. Nano Today 2013; 8: 11-20. http://dx.doi.org/10.1016/j.nantod.2012.12.003
- [102] Gu Z, Yan M, Hu B, Joo KI, Biswas A, Huang Y, et al. Protein nanocapsule weaved with enzymatically degradable polymeric network. Nano Lett 2009; 9: 4533-8. http://dx.doi.org/10.1021/nl902935b
- [103] Zhao M, Biswas A, Hu B, Joo KI, Wang P, Gu Z, et al. Redox-responsive nanocapsules for intracellular protein delivery. Biomaterials 2011; 32: 5223-30. http://dx.doi.org/10.1016/j.biomaterials.2011.03.060
- [104] Tolstoy VP. Successive ionic layer deposition. The use in nanotechnology. Russ Chem Rev 2006; 75: 161-175. http://dx.doi.org/10.1070/RC2006v075n02ABEH001197
- [105] Decher G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science 1997; 277: 1232-1237. http://dx.doi.org/10.1126/science.277.5330.1232
- [106] Keller SW, Kim H-N, Mallouk TE. Layer-by-Layer Assembly of Intercalation Compounds and Heterostructures on Surfaces: Toward Molecular "Beaker" Epitaxy. J Am Chem Soc 1994; 116: 8817-8818. http://dx.doi.org/10.1021/ja00098a055
- [107] Fujii N, Fujimoto K, Michinobu T, Akada M, Hill JP, Shiratori S, et al. The Simplest Layer-by-Layer Assembly Structure: Best Paired Polymer Electrolytes with One Charge per Main Chain Carbon Atom for Multilayered Thin Films. Macromolecules 2010; 43: 3947-3955. http://dx.doi.org/10.1021/ma100473
- [108] Lvov Y, Ariga K, Ichinose I, Kunitake T. Assembly of Multicomponent Protein Films by Means of Electrostatic Layer-by-Layer Adsorption. J Am Chem Soc 1995; 117: 6117-6123. http://dx.doi.org/10.1021/ja00127a026
- [109] Lvov Y, Onda M, Ariga K, Kunitake T. Ultrathin films of charged polysaccharides assembled alternately with linear polyions. J Biomater Sci Polym Ed 1998; 9: 345-55. http://dx.doi.org/10.1080/09205063.1998.9753060
- [110] Ariga K, Lvov Y, Ichinose I, Kunitake T. Ultrathin films of inorganic materials (SiO2 nanoparticle, montmorillonite microplate, and molybdenum oxide) prepared by alternate layer-by-layer assembly with organic polyions. Appl Clay Sci 1999; 15: 137-152. http://dx.doi.org/10.1016/S0169-1317(99)00012-5
- [111] Hammond PT. Form and Function in Multilayer Assembly: New Applications at the Nanoscale. Adv Mater 2004; 16: 1271-1293. http://dx.doi.org/10.1002/adma.200400760
- [112] Tang Z, Wang Y, Podsiadlo P, Kotov NA. Biomedical Applications of Layer-by-Layer Assembly: From Biomimetics to Tissue Engineering. Adv Mater 2006; 18: 3203-3224. http://dx.doi.org/10.1002/adma.200600113

- [113] De Geest BG, Sanders NN, Sukhorukov GB, Demeester J, De Smedt SC. Release mechanisms for polyelectrolyte capsules. Chem Soc Rev 2007; 36: 636-649. http://dx.doi.org/10.1039/b600460c
- [114] Sukhorukov GB, Rogach AL, Garstka M, Springer S, Parak WJ, Munoz-Javier A, et al. Multifunctionalized polymer microcapsules: novel tools for biological and pharmacological applications. Small 2007; 3: 944-55. http://dx.doi.org/10.1002/smll.200600622
- [115] Ariga K, Lvov YM, Kawakami K, Ji Q, Hill JP. Layer-by-layer self-assembled shells for drug delivery. Adv Drug Deliv Rev 2011; 63: 762-71. http://dx.doi.org/10.1016/j.addr.2011.03.016
- [116] De Koker S, De Cock LJ, Rivera-Gil P, Parak WJ, Auzely Velty R, Vervaet C, et al. Polymeric multilayer capsules delivering biotherapeutics. Adv Drug Deliv Rev 2011; 63: 748-61. http://dx.doi.org/10.1016/j.addr.2011.03.014
- [117] De Cock LJ, De Koker S, De Geest BG, Grooten J, Vervaet C, Remon JP, et al. Polymeric multilayer capsules in drug delivery. Angew Chem Int Ed Engl 2010; 49: 6954-73. http://dx.doi.org/10.1002/anie.200906266
- [118] De Geest BG, Sukhorukov GB, Mohwald H. The pros and cons of polyelectrolyte capsules in drug delivery. Expert Opin Drug Deliv 2009; 6: 613-24. http://dx.doi.org/10.1517/17425240902980162
- [119] Balabushevitch NG, Sukhorukov GB, Moroz NA, Volodkin DV, Larionova NI, Donath E, et al. Encapsulation of proteins by layer-by-layer adsorption of polyelectrolytes onto protein aggregates: factors regulating the protein release. Biotechnol Bioeng 2001; 76: 207-13. http://dx.doi.org/10.1002/bit.1184
- [120] Shen HJ, Shi H, Ma K, Xie M, Tang LL, Shen S, et al. Polyelectrolyte capsules packaging BSA gels for pH-controlled drug loading and release and their antitumor activity. Acta Biomater 2013; 9: 6123-33. http://dx.doi.org/10.1016/j.actbio.2012.12.024
- [121] Xu W, Choi I, Plamper FA, Synatschke CV, Muller AH, Tsukruk VV. Nondestructive light-initiated tuning of layer-bylayer microcapsule permeability. ACS Nano 2013; 7: 598-613. http://dx.doi.org/10.1021/nn304748c
- [122] Li Y, Lu L, Zhang H, Wang J. The pH regulated phycobiliproteins loading and releasing of polyelectrolytes multilayer microcapsules. Colloids Surf B Biointerfaces 2012; 93: 121-6. http://dx.doi.org/10.1016/i.colsurfb.2011.12.029
- [123] Wohl BM, Engbersen JF. Responsive layer-by-layer materials for drug delivery. J Control Release 2012; 158: 2-14. http://dx.doi.org/10.1016/j.jconrel.2011.08.035
- [124] Crouzier T, Szarpak A, Boudou T, Auzely-Velty R, Picart C. Polysaccharide-blend multilayers containing hyaluronan and heparin as a delivery system for rhBMP-2. Small 2010; 6: 651-62. http://dx.doi.org/10.1002/smll.200901728
- [125] Zhou J, Romero G, Rojas E, Ma L, Moya S, Gao C. Layer by layer chitosan/alginate coatings on poly(lactide-co-glycolide) nanoparticles for antifouling protection and Folic acid binding to achieve selective cell targeting. J Colloid Interface Sci 2010; 345: 241-7. http://dx.doi.org/10.1016/i.jcis.2010.02.004
- [126] Ochs CJ, Such GK, Yan Y, van Koeverden MP, Caruso F. Biodegradable click capsules with engineered drug-loaded multilayers. ACS Nano 2010; 4: 1653-63. http://dx.doi.org/10.1021/nn9014278
- [127] Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, et al. A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym J 1985; 17: 117-132. http://dx.doi.org/10.1295/polymj.17.117

- [128] Tomalia DA. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Polym Sci 2005; 30: 294-324. http://dx.doi.org/10.1016/j.progpolymsci.2005.01.007
- [129] Bosman AW, Janssen HM, Meijer EW. About Dendrimers: Structure, Physical Properties, and Applications. Chem Rev 1999; 99: 1665-1688.

http://dx.doi.org/10.1021/cr970069y

- [130] Buhleier E, Wehner W, VÖGtle F. "Cascade"- and "Nonskid-Chain-like" Syntheses of Molecular Cavity Topologies. Synthesis 1978; 1978: 155-158.
- [131] Hawker CJ, Wooley KL, Frechet JMJ. Unimolecular micelles and globular amphiphiles: dendritic macromolecules as novel recyclable solubilization agents. Journal of the Chemical Society, Perkin Transactions 1 1993; 0: 1287-1297. http://dx.doi.org/10.1039/p19930001287
- [132] Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Delivery Rev 2005; 57: 2215-2237. http://dx.doi.org/10.1016/j.addr.2005.09.019
- [133] Klajnert B, Bryszewska M. Dendrimers: properties and applications. Acta Biochim Pol 2001; 48: 199-208.
- [134] Medina SH, El-Sayed MEH. Dendrimers as Carriers for Delivery of Chemotherapeutic Agents. Chem Rev 2009; 109: 3141-3157. http://dx.doi.org/10.1021/cr900174j
- [135] Morgan MT, Carnahan MA, Immoos CE, Ribeiro AA, Finkelstein S, Lee SJ, et al. Dendritic molecular capsules for hydrophobic compounds. J Am Chem Soc 2003; 125: 15485-9. http://dx.doi.org/10.1021/ja0347383
- [136] Morgan MT, Nakanishi Y, Kroll DJ, Griset AP, Carnahan MA, Wathier M, et al. Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Res 2006; 66: 11913-21. http://dx.doi.org/10.1158/0008-5472.CAN-06-2066
- [137] Taratula O, Garbuzenko O, Savla R, Wang YA, He H, Minko T. Multifunctional nanomedicine platform for cancer specific delivery of siRNA by superparamagnetic iron oxide nanoparticles-dendrimer complexes. Curr Drug Deliv 2011; 8: 59-69.

 http://dx.doi.org/10.2174/156720111793663642
- [138] Chang Y, Meng X, Zhao Y, Li K, Zhao B, Zhu M, et al. Novel water-soluble and pH-responsive anticancer drug nanocarriers: doxorubicin-PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs). J Colloid Interface Sci 2011; 363: 403-9. http://dx.doi.org/10.1016/j.jcis.2011.06.086
- [139] Kirkpatrick GJ, Plumb JA, Sutcliffe OB, Flint DJ, Wheate NJ. Evaluation of anionic half generation 3.5-6.5 poly(amidoamine) dendrimers as delivery vehicles for the active component of the anticancer drug cisplatin. J Inorg Biochem 2011; 105: 1115-22. http://dx.doi.org/10.1016/j.jinorgbio.2011.05.017
- [140] He H, Li Y, Jia XR, Du J, Ying X, Lu WL, et al. PEGylated Poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials 2011; 32: 478-87. http://dx.doi.org/10.1016/j.biomaterials.2010.09.002
- [141] Vihola H, Laukkanen A, Tenhu H, Hirvonen J. Drug release characteristics of physically cross-linked thermosensitive poly(N-vinylcaprolactam) hydrogel particles. J Pharm Sci 2008; 97: 4783-4793. http://dx.doi.org/10.1002/jps.21348
- [142] Yallapu MM, Jaggi M, Chauhan SC. Design and engineering of nanogels for cancer treatment. Drug Discov Today 2011; 16: 457-463. http://dx.doi.org/10.1016/j.drudis.2011.03.004

- [143] Giri TK, Thakur A, Alexander A, Ajazuddin, Badwaik H, Tripathi DK. Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications. Acta Pharmaceutica Sinica B 2012; 2: 439-449. http://dx.doi.org/10.1016/j.apsb.2012.07.004
- [144] Hoffman AS. Hydrogels for biomedical applications. Adv Drug Delivery Rev 2012; 64, Supplement: 18-23. http://dx.doi.org/10.1016/j.addr.2012.09.010
- [145] Peppas NA, Hoffman AS. Hydrogels. In: Ratner BD, Hoffman AS, Shoen FJ, Lemons JE, editors. Biomaterials Science (Third Edition). ed. Salt Lake City: Academic Press 2013; p. 166-179
- [146] Hoffman AS. Hydrogels for biomedical applications. Adv Drug Delivery Rev 2002; 54: 3-12. http://dx.doi.org/10.1016/S0169-409X(01)00239-3
- [147] Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 2000; 50: 27-46. http://dx.doi.org/10.1016/S0939-6411(00)00090-4
- [148] Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Delivery Rev 2008; 60: 1638-1649. http://dx.doi.org/10.1016/j.addr.2008.08.002
- [149] Maya S, Sarmento B, Nair A, Rejnold NS, Nair SV, Jayakumar R. Smart Stimuli Sensitive Nanogels in Cancer Drug Delivery and Imaging: A Review. Curr Pharm Des 2013.
- [150] Kwon GS, Okano T. Polymeric micelles as new drug carriers. Adv Drug Delivery Rev 1996; 21: 107-116. http://dx.doi.org/10.1016/S0169-409X(96)00401-2
- [151] Cammas S, Suzuki K, Sone C, Sakurai Y, Kataoka K, Okano T. Thermo-responsive polymer nanoparticles with a coreshell micelle structure as site-specific drug carriers. J Control Release 1997; 48: 157-164. http://dx.doi.org/10.1016/S0168-3659(97)00040-0
- [152] Chang C, Wei H, Wu D-Q, Yang B, Chen N, Cheng S-X, et al. Thermo-responsive shell cross-linked PMMA-b-P(NIPAAm-co-NAS) micelles for drug delivery. Int J Pharm 2011; 420: 333-340. http://dx.doi.org/10.1016/j.iipharm.2011.08.038
- [153] Goto F, Ishihara K, Iwasaki Y, Katayama K, Enomoto R, Yusa S-i. Thermo-responsive behavior of hybrid core crosslinked polymer micelles with biocompatible shells. Polymer 2011; 52: 2810-2818. http://dx.doi.org/10.1016/j.polymer.2011.04.033
- [154] Park JH, Saravanakumar G, Kim K, Kwon IC. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Delivery Rev 2010; 62: 28-41. http://dx.doi.org/10.1016/j.addr.2009.10.003
- [155] Chen LC, Chang CH, Yu CY, Chang YJ, Hsu WC, Ho CL, et al. Biodistribution, pharmacokinetics and imaging of (188)Re-BMEDA-labeled pegylated liposomes after intraperitoneal injection in a C26 colon carcinoma ascites mouse model. Nucl Med Biol 2007; 34: 415-23. http://dx.doi.org/10.1016/j.nucmedbio.2007.02.003
- [156] Blackburn WH, Lyon LA. Size Controlled Synthesis of Monodispersed, Core/Shell Nanogels. Colloid Polym Sci 2008; 286: 563-569. http://dx.doi.org/10.1007/s00396-007-1805-7
- [157] Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 2008; 33: 448-477. http://dx.doi.org/10.1016/j.progpolymsci.2008.01.002
- [158] Park W, Kim Ks, Bae B-c, Kim Y-H, Na K. Cancer cell specific targeting of nanogels from acetylated hyaluronic acid with low molecular weight. Eur J Pharm Sci 2010; 40: 367-375. http://dx.doi.org/10.1016/j.ejps.2010.04.008
- [159] Abd El-Rehim HA, Hegazy E-SA, Hamed AA, Swilem AE. Controlling the size and swellability of stimuli-responsive

- polyvinylpyrrolidone—poly(acrylic acid) nanogels synthesized by gamma radiation-induced template polymerization. Eur Polym J 2013; 49: 601-612. http://dx.doi.org/10.1016/j.eurpolymj.2012.12.002
- [160] Tan ML, Choong PF, Dass CR. Review: doxorubicin delivery systems based on chitosan for cancer therapy. J Pharm Pharmacol 2009; 61: 131-42. http://dx.doi.org/10.1211/jpp.61.02.0001
- [161] Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS. Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy. Int J Nanomedicine 2012; 7: 4077-88.
- [162] Galmarini CM, Warren G, Kohli E, Zeman A, Mitin A, Vinogradov SV. Polymeric nanogels containing the triphosphate form of cytotoxic nucleoside analogues show antitumor activity against breast and colorectal cancer cell lines. Mol Cancer Ther 2008; 7: 3373-80. http://dx.doi.org/10.1158/1535-7163.MCT-08-0616
- [163] Vinogradov S, Kohli E, Zeman A. Comparison of Nanogel Drug Carriers and their Formulations with Nucleoside 5'-Triphosphates. Pharm Res 2006; 23: 920-930. http://dx.doi.org/10.1007/s11095-006-9788-5
- Saboktakin MR, RM, [164] Tabatabaie Ostovarazar Maharramov A, Ramazanov MA. Synthesis and characterization of modified starch hydrogels for photodynamic treatment of cancer. Int J Biol Macromol 2012; 51: 544-549. http://dx.doi.org/10.1016/j.ijbiomac.2012.06.024
- [165] Juarranz A, Jaén P, Sanz-Rodríguez F, Cuevas J, González S. Photodynamic therapy of cancer. Basic principles and applications. Clinical and Translational Oncology 2008; 10: 148-154. http://dx.doi.org/10.1007/s12094-008-0172-2
- [166] Roy I, Ohulchanskyy TY, Pudavar HE, Bergey EJ, Oseroff AR, Morgan J, et al. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy. J Am Chem Soc 2003; 125: 7860-7865. http://dx.doi.org/10.1021/ja0343095
- [167] Tang W, Xu H, Park EJ, Philbert MA, Kopelman R. Encapsulation of methylene blue in polyacrylamide nanoparticle platforms protects its photodynamic effectiveness. Biochem Biophys Res Commun 2008; 369: 579-583.

http://dx.doi.org/10.1016/j.bbrc.2008.02.066

- [168] Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic therapy. Journal of the National Cancer Institute 1998; 90: 889-905. http://dx.doi.org/10.1093/jnci/90.12.889
- [169] Bonnett R. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem Soc Rev 1995; 24: 19-33. http://dx.doi.org/10.1039/cs9952400019
- [170] Murphy EA, Majeti BK, Mukthavaram R, Acevedo LM, Barnes LA, Cheresh DA. Targeted nanogels: a versatile platform for drug delivery to tumors. Mol Cancer Ther 2011; 10: 972-82. http://dx.doi.org/10.1158/1535-7163.MCT-10-0729
- [171] Murphy EA, Majeti BK, Barnes LA, Makale M, Weis SM, Lutu-Fuga K, et al. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc Natl Acad Sci USA 2008; 105: 9343-8. http://dx.doi.org/10.1073/pnas.0803728105
- [172] Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Girard OM, et al. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 2009; 16: 510-20. http://dx.doi.org/10.1016/j.ccr.2009.10.013

- [173] Hensarling RM, Doughty VA, Chan JW, Patton DL. "Clicking" polymer brushes with thiol-yne chemistry: indoors and out. J Am Chem Soc 2009; 131: 14673-5. http://dx.doi.org/10.1021/ja9071157
- [174] Abdelghany SM, Schmid D, Deacon J, Jaworski J, Fay F, McLaughlin KM, et al. Enhanced Antitumor Activity of the Photosensitizer meso-Tetra(N-methyl-4-pyridyl) Porphine Tetra Tosylate through Encapsulation in Antibody-Targeted Chitosan/Alginate Nanoparticles. Biomacromolecules 2013; 14: 302-310. http://dx.doi.org/10.1021/bm301858a
- [175] Yousefpour P, Atyabi F, Vasheghani-Farahani E, Movahedi A-AM, Dinarvand R. Targeted delivery of doxorubicin-utilizing chitosan nanoparticles surface-functionalized with anti-Her2 trastuzumab. International Journal of Nanomedicine 2011; 6: 1977-1990.
- [176] Vinogradov SV, Zeman AD, Batrakova EV, Kabanov AV. Polyplex Nanogel formulations for drug delivery of cytotoxic nucleoside analogs. J Control Release 2005; 107: 143-157. http://dx.doi.org/10.1016/j.jconrel.2005.06.002
- [177] Galmarini CM, Warren G, Senanayake MT, Vinogradov SV. Efficient overcoming of drug resistance to anticancer nucleoside analogs by nanodelivery of active phosphorylated drugs. Int J Pharm 2010; 395: 281-289. http://dx.doi.org/10.1016/j.iipharm.2010.05.028
- [178] Das M, Zhang H, Kumacheva E. Microgels: old materials with new applications. Annu Rev Mater Res 2006; 36: 117-142. http://dx.doi.org/10.1146/annurev.matsci.36.011205.123513
- [179] Sood N, Nagpal S, Nanda S, Bhardwaj A, Mehta A. An overview on stimuli responsive hydrogels as drug delivery system. J Control Release. http://dx.doi.org/10.1016/i.jconrel.2013.02.023
- [180] Oishi M, Nagasaki Y. Stimuli-responsive smart nanogels for cancer diagnostics and therapy. Nanomedicine 2010; 5: 451-468. http://dx.doi.org/10.2217/nnm.10.18
- [181] Wang C, Mallela J, Garapati US, Ravi S, Chinnasamy V, Girard Y, et al. A chitosan modified graphene nanogel for noninvasive controlled drug release. Nanomedicine. http://dx.doi.org/10.1016/j.nano.2013.01.003
- [182] Siegwart DJ, Oh JK, Matyjaszewski K. ATRP in the design of functional materials for biomedical applications. Prog Polym Sci 2012; 37: 18-37. http://dx.doi.org/10.1016/j.progpolymsci.2011.08.001
- [183] Oh JK, Bencherif SA, Matyjaszewski K. Atom transfer radical polymerization in inverse miniemulsion: A versatile route toward preparation and functionalization of microgels/ nanogels for targeted drug delivery applications. Polymer 2009; 50: 4407-4423. http://dx.doi.org/10.1016/j.polymer.2009.06.045
- [184] Bencherif SA, Siegwart DJ, Srinivasan A, Horkay F, Hollinger JO, Washburn NR, et al. Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization. Biomaterials 2009; 30: 5270-5278. http://dx.doi.org/10.1016/j.biomaterials.2009.06.011
- [185] Kim S, Cho S, Lee Y, Chu L-Y. Biotin-conjugated block copolymeric nanoparticles as tumor-targeted drug delivery systems. Macromol Res 2007; 15: 646-655. http://dx.doi.org/10.1007/BF03218945
- [186] Madhusudana Rao K, Mallikarjuna B, Krishna Rao KSV, Siraj S, Chowdoji Rao K, Subha MCS. Novel thermo/pH sensitive nanogels composed from poly(N-vinylcaprolactam) for controlled release of an anticancer drug. Colloids Surf B Biointerfaces 2013; 102: 891-897. http://dx.doi.org/10.1016/j.colsurfb.2012.09.009
- [187] Qiao Z-Y, Zhang R, Du F-S, Liang D-H, Li Z-C. Multiresponsive nanogels containing motifs of ortho ester, oligo(ethylene glycol) and disulfide linkage as carriers of

- hydrophobic anti-cancer drugs. J Control Release 2011; 152: 57-66.
- http://dx.doi.org/10.1016/j.jconrel.2011.02.029
- [188] Xiong W, Wang W, Wang Y, Zhao Y, Chen H, Xu H, et al. Dual temperature/pH-sensitive drug delivery of poly(N-isopropylacrylamide-co-acrylic acid) nanogels conjugated with doxorubicin for potential application in tumor hyperthermia therapy. Colloids Surf B Biointerfaces 2011; 84: 447-453. http://dx.doi.org/10.1016/j.colsurfb.2011.01.040
- [189] Zhou T, Xiao C, Fan J, Chen S, Shen J, Wu W, et al. A nanogel of on-site tunable pH-response for efficient anticancer drug delivery. Acta Biomater 2013; 9: 4546-4557. http://dx.doi.org/10.1016/j.actbio.2012.08.017
- [190] Taurin S, Nehoff H, Greish K. Anticancer nanomedicine and tumor vascular permeability; Where is the missing link? J Control Release 2012; 164: 265-75. http://dx.doi.org/10.1016/j.jconrel.2012.07.013
- [191] Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol 2008; 20: 86-100. http://dx.doi.org/10.1016/j.smim.2007.11.004
- [192] O'Neill LAJ. How frustration leads to inflammation. Science 2008; 320: 619-620. http://dx.doi.org/10.1126/science.1158398
- [193] Puri A, Loomis K, Smith B, Lee JH, Yavlovich A, Heldman E, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 2009; 26: 523-80. http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i6.
- [194] Martins S, Sarmento B, Ferreira DC, Souto EB. Lipid-based colloidal carriers for peptide and protein delivery--liposomes versus lipid nanoparticles. Int J Nanomedicine 2007; 2: 595-607.
- [195] Muehlmann LA, Joanitti GA, Silva JR, Longo JP, Azevedo RB. Liposomal photosensitizers: potential platforms for anticancer photodynamic therapy. Braz J Med Biol Res 2011; 44: 729-37. http://dx.doi.org/10.1590/S0100-879X2011007500091
- [196] Dhankhar R, Vyas SP, Jain AK, Arora S, Rath G, Goyal AK. Advances in novel drug delivery strategies for breast cancer therapy. Artif Cells Blood Substit Immobil Biotechnol 2010; 38: 230-49. http://dx.doi.org/10.3109/10731199.2010.494578
- [197] Sajja HK, East MP, Mao H, Wang YA, Nie S, Yang L. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr Drug Discov Technol 2009; 6: 43-51. http://dx.doi.org/10.2174/157016309787581066
- [198] Felber AE, Dufresne MH, Leroux JC. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv Drug Deliv Rev 2012; 64: 979-92. http://dx.doi.org/10.1016/j.addr.2011.09.006
- [199] de Leeuw J, de Vijlder HC, Bjerring P, Neumann HA. Liposomes in dermatology today. J Eur Acad Dermatol Venereol 2009; 23: 505-16. http://dx.doi.org/10.1111/j.1468-3083.2009.03100.x
- [200] Slingerland M, Guchelaar HJ, Gelderblom H. Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov Today 2012; 17: 160-6. http://dx.doi.org/10.1016/j.drudis.2011.09.015
- [201] Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr Drug Deliv 2007; 4: 297-305. http://dx.doi.org/10.2174/156720107782151269
- [202] Sapra P, Allen TM. Ligand-targeted liposomal anticancer drugs. Prog Lipid Res 2003; 42: 439-62. http://dx.doi.org/10.1016/S0163-7827(03)00032-8

- [203] Huwyler J, Drewe J, Krahenbuhl S. Tumor targeting using liposomal antineoplastic drugs. Int J Nanomedicine 2008; 3: 21-9. http://dx.doi.org/10.2147/IJN.S1253
- [204] Torchilin VP. Fluorescence microscopy to follow the targeting of liposomes and micelles to cells and their intracellular fate. Adv Drug Deliv Rev 2005; 57: 95-109. http://dx.doi.org/10.1016/j.addr.2004.06.002
- [205] Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013; 8: 102. http://dx.doi.org/10.1186/1556-276X-8-102
- [206] Meireles Batista C, Moraes Barros de Carvalho C, Santos Magalhães N. Lipossomas e suas aplicações terapêuticas: Estado da arte. Braz J Pharm Sci 2007; 43: 167-179.
- [207] Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965; 13: 238-52. http://dx.doi.org/10.1016/S0022-2836(65)80093-6
- [208] Allen TM, Cheng WW, Hare JI, Laginha KM. Pharmacokinetics and pharmacodynamics of lipidic nanoparticles in cancer. Anticancer Agents Med Chem 2006; 6: 513-23. http://dx.doi.org/10.2174/187152006778699121
- [209] Barenholz Y. Doxil(R)--the first FDA-approved nano-drug: lessons learned. J Control Release 2012; 160: 117-34. http://dx.doi.org/10.1016/i.jconrel.2012.03.020
- [210] Bogner JR, Kronawitter U, Rolinski B, Truebenbach K, Goebel FD. Liposomal doxorubicin in the treatment of advanced AIDS-related Kaposi sarcoma. J Acquir Immune Defic Syndr 1994; 7: 463-8.
- [211] Beija M, Salvayre R, Lauth-de Viguerie N, Marty JD. Colloidal systems for drug delivery: from design to therapy. Trends Biotechnol 2012; 30: 485-96. http://dx.doi.org/10.1016/j.tibtech.2012.04.008
- [212] Huynh NT, Passirani C, Saulnier P, Benoit JP. Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm 2009; 379: 201-9. http://dx.doi.org/10.1016/j.iipharm.2009.04.026
- [213] Lasa-Saracibar B, Estella-Hermoso de Mendoza A, Guada M, Dios-Vieitez C, Blanco-Prieto MJ. Lipid nanoparticles for cancer therapy: state of the art and future prospects. Expert Opin Drug Deliv 2012; 9: 1245-61. http://dx.doi.org/10.1517/17425247.2012.717928
- [214] Song H, Nie S, Yang X, Li N, Xu H, Zheng L, et al. Characterization and in vivo evaluation of novel lipidchlorambucil nanospheres prepared using a mixture of emulsifiers for parenteral administration. Int J Nanomedicine 2010; 5: 933-42. http://dx.doi.org/10.2147/IJN.S14596
- [215] Lucks JS, Müller RH, inventors; assignee. Medication vehicles made of solid lipid particles (solid lipid nanospheres - SLN). EP0605497 1996
- [216] Battaglia L, Gallarate M. Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opin Drug Deliv 2012; 9: 497-508. http://dx.doi.org/10.1517/17425247.2012.673278
- [217] Muller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs: a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 2004; 113: 151-70. http://dx.doi.org/10.1016/i.ibiotec.2004.06.007
- [218] Wissing SA, Kayser O, Muller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 2004; 56: 1257-72. http://dx.doi.org/10.1016/j.addr.2003.12.002

- [219] Muller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 2002; 242: 121-8. http://dx.doi.org/10.1016/S0378-5173(02)00180-1
- [220] Pardeike J, Hommoss A, Muller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 2009; 366: 170-84. http://dx.doi.org/10.1016/j.ijpharm.2008.10.003
- [221] Mo R, Sun Q, Li N, Zhang C. Intracellular delivery and antitumor effects of pH-sensitive liposomes based on zwitterionic oligopeptide lipids. Biomaterials 2013; 34: 2773-86. http://dx.doi.org/10.1016/i.biomaterials.2013.01.030
- [222] Wehunt MP, Winschel CA, Khan AK, Guo TL, Abdrakhmanova GR, Sidorov V. Controlled drug-release system based on pH-sensitive chloride-triggerable liposomes. J Liposome Res 2013; 23: 37-46. http://dx.doi.org/10.3109/08982104.2012.727423
- [223] Andresen TL, Davidsen J, Begtrup M, Mouritsen OG, Jorgensen K. Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming prodrugs. J Med Chem 2004; 47: 1694-703. http://dx.doi.org/10.1021/jm031029r
- [224] Shum P, Kim JM, Thompson DH. Phototriggering of liposomal drug delivery systems. Adv Drug Deliv Rev 2001; 53: 273-84. http://dx.doi.org/10.1016/S0169-409X(01)00232-0
- [225] Unger EC, McCreery TP, Sweitzer RH, Caldwell VE, Wu Y. Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent. Invest Radiol 1998; 33: 886-92. http://dx.doi.org/10.1097/00004424-199812000-00007
- [226] Needham D, Anyarambhatla G, Kong G, Dewhirst MW. A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res 2000; 60: 1197-201.
- [227] Needham D, Dewhirst MW. The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv Drug Deliv Rev 2001; 53: 285-305. http://dx.doi.org/10.1016/S0169-409X(01)00233-2
- [228] Leung SJ, Romanowski M. Light-activated content release from liposomes. Theranostics 2012; 2: 1020-36. http://dx.doi.org/10.7150/thno.4847
- [229] Wang JY, Wu QF, Li JP, Ren QS, Wang YL, Liu XM. Photosensitive liposomes: chemistry and application in drug delivery. Mini Rev Med Chem 2010; 10: 172-81. http://dx.doi.org/10.2174/138955710791185091
- [230] Yavlovich A, Singh A, Tarasov S, Capala J, Blumenthal R, Puri A. Design of Liposomes Containing Photopolymerizable Phospholipids for Triggered Release of Contents. J Therm Anal Calorim 2009; 98: 97-104. http://dx.doi.org/10.1007/s10973-009-0228-8
- [231] Pakhomov S, Hammer RP, Mishra BK, Thomas BN. Chiral tubule self-assembly from an achiral diynoic lipid. Proc Natl Acad Sci U S A 2003; 100: 3040-2. http://dx.doi.org/10.1073/pnas.0030051100
- [232] Singh A, Markowitz Michael A, Tsao Li I, Deschamps J. Enzyme Immobilization on Polymerizable Phospholipid Assemblies. editors. Diagnostic Biosensor Polymers. ed. American Chemical Society 1994; p. 252-263.
- [233] Yavlovich A, Singh A, Blumenthal R, Puri A. A novel class of photo-triggerable liposomes containing DPPC:DC(8,9)PC as vehicles for delivery of doxorubcin to cells. Biochim Biophys Acta 2011; 1808: 117-26.
- [234] Yuba E, Harada A, Sakanishi Y, Watarai S, Kono K. A liposome-based antigen delivery system using pH-sensitive fusogenic polymers for cancer immunotherapy. Biomaterials 2013; 34: 3042-52. http://dx.doi.org/10.1016/j.biomaterials.2012.12.031

- Frey H, Haag R. Dendritic polyglycerol: a new versatile [235] biocompatible-material. J Biotechnol 2002; 90: 257-67.
- [236] Kono K, Igawa T, Takagishi T. Cytoplasmic delivery of calcein mediated by liposomes modified with a pH-sensitive poly(ethylene glycol) derivative. Biochim Biophys Acta 1997; 1325: 143-54. http://dx.doi.org/10.1016/S0005-2736(96)00244-1
- Sakaguchi N, Kojima C, Harada A, Kono K. Preparation of [237] pH-sensitive poly(glycidol) derivatives with varying hydrophobicities: their ability to sensitize stable liposomes to pH. Bioconjug Chem 2008; 19: 1040-8. http://dx.doi.org/10.1021/bc7004736
- Yuba E, Harada A, Sakanishi Y, Kono K. Carboxylated [238] hyperbranched poly(glycidol)s for preparation of pH-sensitive liposomes. J Control Release 2011; 149: 72-80. http://dx.doi.org/10.1016/j.jconrel.2010.03.001
- [239] Zhong Z, Wan Y, Shi S, Han J, Zhang Z, Sun X. Co-delivery of adenovirus and carmustine by anionic liposomes with synergistic anti-tumor effects. Pharm Res 2012; 29: 145-57. http://dx.doi.org/10.1007/s11095-011-0521-7
- Zhong Z, Han J, Wan Y, Zhang Z, Sun X. Anionic liposomes [240] enhance and prolong adenovirus-mediated gene expression in airway epithelia in vitro and in vivo. Mol Pharm 2011; 8: 673-82. http://dx.doi.org/10.1021/mp100404g
- Wonganan P, Croyle MA. PEGylated Adenoviruses: From Mice to Monkeys. Viruses 2010; 2: 468-502. http://dx.doi.org/10.3390/v2020468
- [242] Mishra S, Webster P, Davis ME. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol 2004; 83: 97-111. http://dx.doi.org/10.1078/0171-9335-00363
- Hatakeyama H, Akita H, Harashima H. A multifunctional [243] envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv Drug Deliv Rev 2011; 63: 152-60. http://dx.doi.org/10.1016/j.addr.2010.09.001
- [244] Chau Y, Padera RF, Dang NM, Langer R. Antitumor efficacy of a novel polymer-peptide-drug conjugate in human tumor xenograft models. Int J Cancer 2006; 118: 1519-26. http://dx.doi.org/10.1002/ijc.21495
- [245] Doyle EL, Hunter CA, Phillips HC, Webb SJ, Williams NH. Cooperative binding at lipid bilayer membrane surfaces. J Am Chem Soc 2003: 125: 4593-9. http://dx.doi.org/10.1021/ja021048a
- Bae M, Cho S, Song J, Lee GY, Kim K, Yang J, et al. [246] Metalloprotease-specific poly(ethylene glycol) methyl etherpeptide-doxorubicin conjugate for targeting anticancer drug delivery based on angiogenesis. Drugs Exp Clin Res 2003;
- Maeda T, Fujimoto K. A reduction-triggered delivery by a liposomal carrier possessing membrane-permeable ligands and a detachable coating. Colloids Surf B Biointerfaces 2006; 49: 15-21. http://dx.doi.org/10.1016/j.colsurfb.2006.02.006
- Shin J, Shum P, Thompson DH. Acid-triggered release via [248] dePEGylation of DOPE liposomes containing acid-labile vinyl ether PEG-lipids. J Control Release 2003; 91: 187-200. http://dx.doi.org/10.1016/S0168-3659(03)00232-3
- Zhang JX, Zalipsky S, Mullah N, Pechar M, Allen TM. [249] Pharmaco attributes of dioleoylphosphatidylethanolamine/ cholesterylhemisuccinate liposomes containing different types of cleavable lipopolymers. Pharmacol Res 2004; 49: 185-98. http://dx.doi.org/10.1016/j.phrs.2003.09.003
- Obata Y, Tajima S, Takeoka S. Evaluation of pH-responsive [250] liposomes containing amino acid-based zwitterionic lipids for improving intracellular drug delivery in vitro and in vivo. J Control Release 2010; 142: 267-76. http://dx.doi.org/10.1016/j.jconrel.2009.10.023

- Mo R, Sun Q, Xue J, Li N, Li W, Zhang C, et al. Multistage [251] pH-responsive liposomes for mitochondrial-targeted anticancer drug delivery. Adv Mater 2012; 24: 3659-65. http://dx.doi.org/10.1002/adma.201201498
- Cheng CJ, Saltzman WM. Enhanced siRNA delivery into [252] cells by exploiting the synergy between targeting ligands and cell-penetrating peptides. Biomaterials 2011; 32: 6194-203.
- Lee JY, Bae KH, Kim JS, Nam YS, Park TG. Intracellular delivery of paclitaxel using oil-free, shell cross-linked HSA-multi-armed PEG nanocapsules. Biomaterials 2011; 32: 8635-44. http://dx.doi.org/10.1016/j.biomaterials.2011.07.063
- Liu J, Zhao Y, Guo Q, Wang Z, Wang H, Yang Y, et al. TAT-[254] modified nanosilver for combating multidrug-resistant cancer. Biomaterials 2012; 33: 6155-61. http://dx.doi.org/10.1016/j.biomaterials.2012.05.035
- Zhang W, Song J, Zhang B, Liu L, Wang K, Wang R. Design [255] of acid-activated cell penetrating peptide for delivery of active molecules into cancer cells. Bioconjug Chem 2011; 22: 1410http://dx.doi.org/10.1021/bc200138d
- [256] Tu Z, Volk M, Shah K, Clerkin K, Liang JF. Constructing bioactive peptides with pH-dependent activities. Peptides 2009; 30: 1523-8. http://dx.doi.org/10.1016/j.peptides.2009.05.009
- Makovitzki A, Fink A, Shai Y. Suppression of human solid [257] tumor growth in mice by intratumor and systemic inoculation of histidine-rich and pH-dependent host defense-like lytic peptides. Cancer Res 2009; 69: 3458-63. http://dx.doi.org/10.1158/0008-5472.CAN-08-3021
- [258] Gerweck LE, Seetharaman K. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res 1996; 56: 1194-8.
- [259] Koren E, Apte A, Sawant RR, Grunwald J, Torchilin VP. Cellpenetrating TAT peptide in drug delivery systems: proteolytic stability requirements. Drug Deliv 2011; 18: 377-84. http://dx.doi.org/10.3109/10717544.2011.567310
- [260] Lee MY, Park SJ, Park K, Kim KS, Lee H, Hahn SK. Targetspecific gene silencing of layer-by-layer assembled goldcysteamine/siRNA/PEI/HA nanocomplex. ACS Nano 2011; 5: http://dx.doi.org/10.1021/nn2017793
- Tian H, Lin L, Chen J, Chen X, Park TG, Maruyama A. RGD targeting hyaluronic acid coating system for PEI-PBLG polycation gene carriers. J Control Release 2011; 155: 47-53. http://dx.doi.org/10.1016/j.jconrel.2011.01.025
- Poon Z, Lee JB, Morton SW, Hammond PT. Controlling in [262] vivo stability and biodistribution in electrostatically assembled nanoparticles for systemic delivery. Nano Lett 2011; 11: 2096-103. http://dx.doi.org/10.1021/nl200636r
- [263] Herrlich P, Sleeman J, Wainwright D, König H, Sherman L, Hilberg F, et al. How Tumor Cells Make Use of CD44. Cell Communication and Adhesion 1998; 6: 141-147. http://dx.doi.org/10.3109/15419069809004470
- Hall CL, Yang B, Yang X, Zhang S, Turley M, Samuel S, et [264] al. Overexpression of the hyaluronan receptor RHAMM is transforming and is also required for H-ras transformation. Cell 1995; 82: 19-26. http://dx.doi.org/10.1016/0092-8674(95)90048-9
- Wang L, Su W, Liu Z, Zhou M, Chen S, Chen Y, et al. CD44 [265] antibody-targeted liposomal nanoparticles for molecular imaging and therapy of hepatocellular carcinoma. Biomaterials 2012; 33: 5107-14. http://dx.doi.org/10.1016/j.biomaterials.2012.03.067
- Li J, Huo M, Wang J, Zhou J, Mohammad JM, Zhang Y, et al. [266] Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted

- intracellular delivery of paclitaxel. Biomaterials 2012; 33: 2310-20.
- http://dx.doi.org/10.1016/j.biomaterials.2011.11.022
- [267] Yoon HY, Koo H, Choi KY, Lee SJ, Kim K, Kwon IC, et al. Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials 2012; 33: 3980-9. http://dx.doi.org/10.1016/j.biomaterials.2012.02.016
- [268] Choi KY, Chung H, Min KH, Yoon HY, Kim K, Park JH, et al. Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 2010; 31: 106-14. http://dx.doi.org/10.1016/j.biomaterials.2009.09.030
- [269] Stern R. Hyaluronidases in cancer biology. Semin Cancer Biol 2008; 18: 275-80. http://dx.doi.org/10.1016/j.semcancer.2008.03.017
- [270] Girish KS, Kemparaju K, Nagaraju S, Vishwanath BS. Hyaluronidase inhibitors: a biological and therapeutic perspective. Curr Med Chem 2009; 16: 2261-88. http://dx.doi.org/10.2174/092986709788453078
- [271] Jiang T, Zhang Z, Zhang Y, Lv H, Zhou J, Li C, et al. Dual-functional liposomes based on pH-responsive cell-penetrating peptide and hyaluronic acid for tumor-targeted anticancer drug delivery. Biomaterials 2012; 33: 9246-58. http://dx.doi.org/10.1016/j.biomaterials.2012.09.027
- [272] Bull JL. The application of microbubbles for targeted drug delivery. Expert Opin Drug Deliv 2007; 4: 475-93. http://dx.doi.org/10.1517/17425247.4.5.475
- [273] Tartis MS, McCallan J, Lum AF, LaBell R, Stieger SM, Matsunaga TO, et al. Therapeutic effects of paclitaxelcontaining ultrasound contrast agents. Ultrasound Med Biol 2006; 32: 1771-80. http://dx.doi.org/10.1016/j.ultrasmedbio.2006.03.017
- [274] Leong-Poi H, Kuliszewski MA, Lekas M, Sibbald M, Teichert-Kuliszewska K, Klibanov AL, et al. Therapeutic arteriogenesis by ultrasound-mediated VEGF165 plasmid gene delivery to chronically ischemic skeletal muscle. Circ Res 2007; 101: 295-303.
 - http://dx.doi.org/10.1161/CIRCRESAHA.107.148676
- [275] Klibanov AL, Shevchenko TI, Raju BI, Seip R, Chin CT. Ultrasound-triggered release of materials entrapped in microbubble-liposome constructs: a tool for targeted drug delivery. J Control Release 2010; 148: 13-7. http://dx.doi.org/10.1016/j.jconrel.2010.07.115
- [276] Lentacker I, Geers B, Demeester J, De Smedt SC, Sanders NN. Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: cytotoxicity and mechanisms involved. Mol Ther 2010; 18: 101-8.
 - http://dx.doi.org/10.1038/mt.2009.160
- [277] Yan F, Li L, Deng Z, Jin Q, Chen J, Yang W, et al. Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers. J Control Release 2013; 166: 246-55. http://dx.doi.org/10.1016/j.jconrel.2012.12.025
- [278] Zhong Z, Shi S, Han J, Zhang Z, Sun X. Anionic liposomes increase the efficiency of adenovirus-mediated gene transfer to coxsackie-adenovirus receptor deficient cells. Mol Pharm 2010; 7: 105-15. http://dx.doi.org/10.1021/mp900151k
- [279] Wan Y, Han J, Fan G, Zhang Z, Gong T, Sun X. Enzymeresponsive liposomes modified adenoviral vectors for enhanced tumor cell transduction and reduced immunogenicity. Biomaterials 2013; 34: 3020-30. http://dx.doi.org/10.1016/j.biomaterials.2012.12.051
- [280] Lasic DD. Doxorubicin in sterically stabilized liposomes. Nature 1996; 380: 561-2. http://dx.doi.org/10.1038/380561a0

- [281] Yatvin MB, Weinstein JN, Dennis WH, Blumenthal R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science 1978; 202: 1290-3. http://dx.doi.org/10.1126/science.364652
- [282] Pili B, Reddy LH, Bourgaux C, Lepetre-Mouelhi S, Desmaele D, Couvreur P. Liposomal squalenoyl-gemcitabine: formulation, characterization and anticancer activity evaluation. Nanoscale 2010; 2: 1521-1526. http://dx.doi.org/10.1039/c0nr00132e
- [283] Banno B, Ickenstein LM, Chiu GN, Bally MB, Thewalt J, Brief E, et al. The functional roles of poly(ethylene glycol)-lipid and lysolipid in the drug retention and release from lysolipidcontaining thermosensitive liposomes in vitro and in vivo. J Pharm Sci 2010; 99: 2295-308.
- [284] Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 2010; 22: 2729-42. http://dx.doi.org/10.1002/adma.201000260
- [285] Yang C, Wu J, Hou Y. Fe3O4 nanostructures: synthesis, growth mechanism, properties and applications. Chemical Communications 2011; 47: 5130-5141. http://dx.doi.org/10.1039/c0cc05862a
- [286] Cai K, Li J, Luo Z, Hu Y, Hou Y, Ding X. [small beta]-Cyclodextrin conjugated magnetic nanoparticles for diazepam removal from blood. Chemical Communications 2011; 47: 7719-7721. http://dx.doi.org/10.1039/c1cc11855b
- [287] Ding X, Cai K, Luo Z, Li J, Hu Y, Shen X. Biocompatible magnetic liposomes for temperature triggered drug delivery. Nanoscale 2012; 4: 6289-92. http://dx.doi.org/10.1039/c2nr31292a
- [288] Wacheck V, Zangemeister-Wittke U. Antisense molecules for targeted cancer therapy. Crit Rev Oncol Hematol 2006; 59: 65-73. http://dx.doi.org/10.1016/j.critrevonc.2005.10.004
- [289] Watts JK, Corey DR. Silencing disease genes in the laboratory and the clinic. J Pathol 2012; 226: 365-79. http://dx.doi.org/10.1002/path.2993
- [290] Wang X, Wang C, Qin YW, Yan SK, Gao YR. Simultaneous suppression of multidrug resistance and antiapoptotic cellular defense induces apoptosis in chemoresistant human acute myeloid leukemia cells. Leuk Res 2007; 31: 989-94. http://dx.doi.org/10.1016/j.leukres.2006.09.001
- [291] Lo YL, Ho CT, Tsai FL. Inhibit multidrug resistance and induce apoptosis by using glycocholic acid and epirubicin. Eur J Pharm Sci 2008; 35: 52-67. http://dx.doi.org/10.1016/j.ejps.2008.06.003
- [292] Minko T, Dharap SS, Pakunlu RI, Wang Y. Molecular targeting of drug delivery systems to cancer. Curr Drug Targets 2004; 5: 389-406. http://dx.doi.org/10.2174/1389450043345443
- [293] Pakunlu RI, Wang Y, Saad M, Khandare JJ, Starovoytov V, Minko T. In vitro and in vivo intracellular liposomal delivery of antisense oligonucleotides and anticancer drug. J Control Release 2006; 114: 153-62. http://dx.doi.org/10.1016/j.jconrel.2006.06.010
- [294] Yamanaka K, Rocchi P, Miyake H, Fazli L, So A, Zangemeister-Wittke U, et al. Induction of apoptosis and enhancement of chemosensitivity in human prostate cancer LNCaP cells using bispecific antisense oligonucleotide targeting Bcl-2 and Bcl-xL genes. BJU Int 2006; 97: 1300-8. http://dx.doi.org/10.1111/j.1464-410X.2006.06147.x
- [295] Yamanaka K, Rocchi P, Miyake H, Fazli L, Vessella B, Zangemeister-Wittke U, et al. A novel antisense oligonucleotide inhibiting several antiapoptotic Bcl-2 family members induces apoptosis and enhances chemosensitivity in androgen-independent human prostate cancer PC3 cells. Mol Cancer Ther 2005; 4: 1689-98. http://dx.doi.org/10.1158/1535-7163.MCT-05-0064

- [296] Lo Y-L, Liu Y, Tsai J-C. Overcoming multidrug resistance using liposomal epirubicin and antisense oligonucleotides targeting pump and nonpump resistances in vitro and in vivo. Biomedicine & Pharmacotherapy 2013. http://dx.doi.org/10.1016/ji.biopha.2012.12.002
- [297] Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 2010; 9: 447-64. http://dx.doi.org/10.1038/nrd3137
- [298] Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria in cancer cells: what is so special about them? Trends Cell Biol 2008; 18: 165-73. http://dx.doi.org/10.1016/j.tcb.2008.01.006
- [299] Zhou J, Zhao WY, Ma X, Ju RJ, Li XY, Li N, et al. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials 2013; 34: 3626-38. http://dx.doi.org/10.1016/j.biomaterials.2013.01.078
- [300] Murphy MP. Selective targeting of bioactive compounds to mitochondria. Trends Biotechnol 1997; 15: 326-30. http://dx.doi.org/10.1016/S0167-7799(97)01068-8
- [301] Millard M, Pathania D, Shabaik Y, Taheri L, Deng J, Neamati N. Preclinical evaluation of novel triphenylphosphonium salts with broad-spectrum activity. PLoS One 2010; 5.
- [302] Yamada Y, Harashima H. Mitochondrial drug delivery systems for macromolecule and their therapeutic application to mitochondrial diseases. Adv Drug Deliv Rev 2008; 60: 1439-62. http://dx.doi.org/10.1016/j.addr.2008.04.016
- [303] Malhi SS, Budhiraja A, Arora S, Chaudhari KR, Nepali K, Kumar R, et al. Intracellular delivery of redox cycler-doxorubicin to the mitochondria of cancer cell by folate receptor targeted mitocancerotropic liposomes. Int J Pharm 2012; 432: 63-74. http://dx.doi.org/10.1016/j.ijpharm.2012.04.030
- [304] Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 1991; 51: 794-8.
- [305] Kawanishi S, Hiraku Y, Pinlaor S, Ma N. Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis. Biol Chem 2006; 387: 365-72. http://dx.doi.org/10.1515/BC.2006.049
- [306] Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 2004; 7: 97-110. http://dx.doi.org/10.1016/j.drup.2004.01.004
- [307] Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 2009; 8: 579-91. http://dx.doi.org/10.1038/nrd2803
- [308] Myers CE, McGuire WP, Liss RH, Ifrim I, Grotzinger K, Young RC. Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response. Science 1977; 197: 165-7. http://dx.doi.org/10.1126/science.877547
- [309] Agarwal A, Majumder S, Agrawal H, Majumdar S, Agrawal GP. Cationized albumin conjugated solid lipid nanoparticles as vectors for brain delivery of an anti-cancer drug. Curr Nanosci 2011; 7: 71-80. http://dx.doi.org/10.2174/157341311794480291
- [310] Kumagai AK, Eisenberg JB, Pardridge WM. Absorptivemediated endocytosis of cationized albumin and a betaendorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport. J Biol Chem 1987; 262: 15214-9.
- [311] Triguero D, Buciak J, Pardridge WM. Capillary depletion method for quantification of blood-brain barrier transport of circulating peptides and plasma proteins. J Neurochem 1990; 54: 1882-8. http://dx.doi.org/10.1111/j.1471-4159.1990.tb04886.x

- [312] Thole M, Nobmann S, Huwyler J, Bartmann A, Fricker G. Uptake of cationzied albumin coupled liposomes by cultured porcine brain microvessel endothelial cells and intact brain capillaries. J Drug Target 2002; 10: 337-44. http://dx.doi.org/10.1080/10611860290031840
- [313] Lu W, Tan YZ, Hu KL, Jiang XG. Cationic albumin conjugated pegylated nanoparticle with its transcytosis ability and little toxicity against blood-brain barrier. Int J Pharm 2005; 295: 247-60. http://dx.doi.org/10.1016/j.ijpharm.2005.01.043
- [314] Bickel U, Yoshikawa T, Pardridge WM. Delivery of peptides and proteins through the blood-brain barrier. Adv Drug Deliv Rev 2001; 46: 247-79. http://dx.doi.org/10.1016/S0169-409X(00)00139-3
- [315] Venishetty VK, Komuravelli R, Kuncha M, Sistla R, Diwan PV. Increased brain uptake of docetaxel and ketoconazole loaded folate-grafted solid lipid nanoparticles. Nanomedicine 2013; 9: 111-21. http://dx.doi.org/10.1016/i.nano.2012.03.003
- [316] Royer I, Monsarrat B, Sonnier M, Wright M, Cresteil T. Metabolism of docetaxel by human cytochromes P450: interactions with paclitaxel and other antineoplastic drugs. Cancer Res 1996; 56: 58-65.
- [317] Engels FK, Ten Tije AJ, Baker SD, Lee CK, Loos WJ, Vulto AG, et al. Effect of cytochrome P450 3A4 inhibition on the pharmacokinetics of docetaxel. Clin Pharmacol Ther 2004; 75: 448-54. http://dx.doi.org/10.1016/j.clpt.2004.01.001
- [318] Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release 2008; 127: 97-109. http://dx.doi.org/10.1016/j.iconrel.2007.12.018
- [319] Kuo YC, Liang CT. Inhibition of human brain malignant glioblastoma cells using carmustine-loaded catanionic solid lipid nanoparticles with surface anti-epithelial growth factor receptor. Biomaterials 2011; 32: 3340-50. http://dx.doi.org/10.1016/j.biomaterials.2011.01.048
- [320] Bramer T, Dew N, Edsman K. Pharmaceutical applications for catanionic mixtures. J Pharm Pharmacol 2007; 59: 1319-34. http://dx.doi.org/10.1211/jpp.59.10.0001
- [321] Kuo YC, Liang CT. Catanionic solid lipid nanoparticles carrying doxorubicin for inhibiting the growth of U87MG cells. Colloids Surf B Biointerfaces 2011; 85: 131-7. http://dx.doi.org/10.1016/j.colsurfb.2011.02.011
- [322] Perche F, Torchilin VP. Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J Drug Deliv 2013; 2013: 705265.
- [323] Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 2013; 65: 36-48. http://dx.doi.org/10.1016/j.addr.2012.09.037
- [324] Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev 2006; 58: 1532-55. http://dx.doi.org/10.1016/j.addr.2006.09.009
- [325] Deng L, Ke X, He Z, Yang D, Gong H, Zhang Y, et al. A MSLN-targeted multifunctional nanoimmunoliposome for MRI and targeting therapy in pancreatic cancer. Int J Nanomedicine 2012; 7: 5053-65.
- [326] Xu W, Liu LZ, Loizidou M, Ahmed M, Charles IG. The role of nitric oxide in cancer. Cell Res 2002; 12: 311-20. http://dx.doi.org/10.1038/sj.cr.7290133
- [327] Wink DA, Vodovotz Y, Laval J, Laval F, Dewhirst MW, Mitchell JB. The multifaceted roles of nitric oxide in cancer. Carcinogenesis 1998; 19: 711-21. http://dx.doi.org/10.1093/carcin/19.5.711
- [328] Boyd CS, Cadenas E. Nitric oxide and cell signaling pathways in mitochondrial-dependent apoptosis. Biol Chem 2002; 383: 411-23. http://dx.doi.org/10.1515/BC.2002.045

- [329] Hofseth LJ, Hussain SP, Wogan GN, Harris CC. Nitric oxide in cancer and chemoprevention. Free Radic Biol Med 2003; 34: 955-68. http://dx.doi.org/10.1016/S0891-5849(02)01363-1
- [330] Wink DA, Mitchell JB. Nitric oxide and cancer: an introduction. Free Radic Biol Med 2003; 34: 951-4. http://dx.doi.org/10.1016/S0891-5849(02)01362-X
- [331] Xie K, Huang S. Contribution of nitric oxide-mediated apoptosis to cancer metastasis inefficiency. Free Radic Biol Med 2003; 34: 969-86. http://dx.doi.org/10.1016/S0891-5849(02)01364-3
- [332] Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumour progression. Nat Rev Cancer 2006; 6: 521-34. http://dx.doi.org/10.1038/nrc1910
- [333] Mocellin S, Bronte V, Nitti D. Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Med Res Rev 2007; 27: 317-52. http://dx.doi.org/10.1002/med.20092
- [334] Mitchell JB, Wink DA, DeGraff W, Gamson J, Keefer LK, Krishna MC. Hypoxic mammalian cell radiosensitization by nitric oxide. Cancer Res 1993; 53: 5845-8.
- [335] Bourassa J, DeGraff W, Kudo S, Wink DA, Mitchell JB, Ford PC. Photochemistry of Roussin's Red Salt, Na2[Fe2S2(NO)4], and of Roussin's Black Salt, NH4[Fe4S3(NO)7]. In Situ Nitric Oxide Generation To Sensitize γ-Radiation Induced Cell Death1. J Am Chem Soc 1997; 119: 2853-2860. http://dx.doi.org/10.1021/ja963914n
- [336] Jordan BF, Sonveaux P, Feron O, Gregoire V, Beghein N, Dessy C, et al. Nitric oxide as a radiosensitizer: evidence for an intrinsic role in addition to its effect on oxygen delivery and consumption. Int J Cancer 2004; 109: 768-73. http://dx.doi.org/10.1002/ijc.20046
- [337] De Leo M, Ford PC. Reversible Photolabilization of NO from Chromium(III)-Coordinated Nitrite. A New Strategy for Nitric Oxide Delivery. J Am Chem Soc 1999; 121: 1980-1981. http://dx.doi.org/10.1021/ja983875a
- [338] DeLeo MA, Ford PC. Photoreactions of coordinated nitrite ion. Reversible nitric oxide labilization from the chromium(III) complex [trans-Cr(cyclam)(ONO)2]+. Coord Chem Rev 2000; 208: 47-59. http://dx.doi.org/10.1016/S0010-8545(00)00271-X
- [339] Derosa F, Bu X, Ford PC. Chromium(III) complexes for photochemical nitric oxide generation from coordinated nitrite: synthesis and photochemistry of macrocyclic complexes with pendant chromophores, trans-[Cr(L)(ONO)(2)]BF(4). Inorg Chem 2005; 44: 4157-65. http://dx.doi.org/10.1021/ic0483110
- [340] Ostrowski AD, Absalonson RO, De Leo MA, Wu G, Pavlovich JG, Adamson J, et al. Photochemistry of trans-Cr(cyclam)(ONO)2+, a nitric oxide precursor. Inorg Chem 2011; 50: 4453-62. http://dx.doi.org/10.1021/ic200094x
- [341] Ostrowski AD, Deakin SJ, Azhar B, Miller TW, Franco N, Cherney MM, et al. Nitric oxide photogeneration from trans-Cr(cyclam)(ONO)(2)(+) in a reducing environment. activation of soluble guanylyl cyclase and arterial vasorelaxation. J Med Chem 2010; 53: 715-22. http://dx.doi.org/10.1021/jm9013357
- [342] Ford PC. Polychromophoric metal complexes for generating the bioregulatory agent nitric oxide by single- and two-photon excitation. Acc Chem Res 2008; 41: 190-200. http://dx.doi.org/10.1021/ar700128y
- [343] Sortino S. Photoactivated nanomaterials for biomedical release applications. J Mater Chem 2012; 22: 301-318. http://dx.doi.org/10.1039/c1jm13288a
- [344] Ostrowski AD, Lin BF, Tirrell MV, Ford PC. Liposome encapsulation of a photochemical NO precursor for

- controlled nitric oxide release and simultaneous fluorescence imaging. Mol Pharm 2012; 9: 2950-5. http://dx.doi.org/10.1021/mp300139y
- [345] Biswas S, Dodwadkar NS, Sawant RR, Torchilin VP. Development of the novel PEG-PE-based polymer for the reversible attachment of specific ligands to liposomes: synthesis and in vitro characterization. Bioconjug Chem 2011; 22: 2005-13. http://dx.doi.org/10.1021/bc2002133
- [346] Zhu L, Kate P, Torchilin VP. Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 2012; 6: 3491-8. http://dx.doi.org/10.1021/nn300524f
- [347] Zhu G, Alhamhoom Y, Cummings BS, Arnold RD. Synthesis of lipids for development of multifunctional lipid-based drugcarriers. Bioorg Med Chem Lett 2011; 21: 6370-5. http://dx.doi.org/10.1016/j.bmcl.2011.08.103
- [348] Tagami T, Foltz WD, Ernsting MJ, Lee CM, Tannock IF, May JP, et al. MRI monitoring of intratumoral drug delivery and prediction of the therapeutic effect with a multifunctional thermosensitive liposome. Biomaterials 2011; 32: 6570-8. http://dx.doi.org/10.1016/j.biomaterials.2011.05.029
- [349] Zhang L-W, Wen C-J, Al-Suwayeh S, Yen T-C, Fang J-Y. Cisplatin and quantum dots encapsulated in liposomes as multifunctional nanocarriers for theranostic use in brain and skin. Journal of Nanoparticle Research 2012; 14: 1-18. http://dx.doi.org/10.1007/s11051-012-0882-9
- [350] Chen YS, Hung YC, Liau I, Huang GS. Assessment of the In vivo Toxicity of Gold Nanoparticles. Nanoscale Res Lett 2009; 4: 858-864. http://dx.doi.org/10.1007/s11671-009-9334-6
- [351] Fadeel B, Garcia-Bennett AE. Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev 2010; 62: 362-74. http://dx.doi.org/10.1016/ji.addr.2009.11.008
- [352] Khlebtsov NG, Dykman LA. Biodistribution and toxicity of gold nanoparticles. Nanotechnologies in Russia 2011; 6: 17-42. http://dx.doi.org/10.1134/S1995078011010101
- [353] Petryayeva E, Krull UJ. Localized surface plasmon resonance: nanostructures, bioassays and biosensing--a review. Anal Chim Acta 2011; 706: 8-24. http://dx.doi.org/10.1016/j.aca.2011.08.020
- [354] Kalele S, Gosavi SW, Urban J, Kulkarni SK. Nanoshell particles: synthesis, properties and applications. Curr Sci 2006; 91: 1038-1052.
- [355] Hutter E, Fendler JH. Exploitation of Localized Surface Plasmon Resonance. Adv Mater 2004; 16: 1685-1706. http://dx.doi.org/10.1002/adma.200400271
- [356] Zeng S, Yong K-T, Roy I, Dinh X-Q, Yu X, Luan F. A Review on Functionalized Gold Nanoparticles for Biosensing Applications. Plasmonics 2011; 6: 491-506. http://dx.doi.org/10.1007/s11468-011-9228-1
- [357] Halas N. Playing with Plasmons: Tuning the Optical Resonant Properties of Metallic Nanoshells. MRS Bulletin 2005; 30: 362-367. http://dx.doi.org/10.1557/mrs2005.99
- [358] Xu ZP, Zeng QH, Lu GQ, Yu AB. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 2006; 61: 1027-1040. http://dx.doi.org/10.1016/j.ces.2005.06.019
- [359] Colombo M, Carregal-Romero S, Casula MF, Gutierrez L, Morales MP, Bohm IB, et al. Biological applications of magnetic nanoparticles. Chem Soc Rev 2012; 41: 4306-34. http://dx.doi.org/10.1039/c2cs15337h

- [360] Xu C, Sun S. Superparamagnetic nanoparticles as targeted probes for diagnostic and therapeutic applications. Dalton Trans 2009; 0: 5583-5591. http://dx.doi.org/10.1039/b900272n
- [361] Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2008; 2: 889-96. http://dx.doi.org/10.1021/nn800072t
- [362] Slowing, II, Vivero-Escoto JL, Wu CW, Lin VS. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 2008; 60: 1278-88. http://dx.doi.org/10.1016/j.addr.2008.03.012
- [363] Liu H, Shen M, Zhao J, Zhu J, Xiao T, Cao X, et al. Facile formation of folic acid-modified dendrimer-stabilized goldsilver alloy nanoparticles for potential cellular computed tomography imaging applications. Analyst 2013; 138: 1979-87. http://dx.doi.org/10.1039/c3an36649a
- [364] Yang S, Chen D, Li N, Mei X, Qi X, Li H, et al. A facile preparation of targetable pH-sensitive polymeric nanocarriers

- with encapsulated magnetic nanoparticles for controlled drug release. J Mater Chem 2012; 22: 25354-25361. http://dx.doi.org/10.1039/c2im34817a
- [365] Zhang Q, Liu F, Nguyen KT, Ma X, Wang X, Xing B, et al. Multifunctional Mesoporous Silica Nanoparticles for Cancer-Targeted and Controlled Drug Delivery. Adv Funct Mater 2012; 22: 5144-5156. http://dx.doi.org/10.1002/adfm.201201316
- [366] Ma M, Chen H, Chen Y, Wang X, Chen F, Cui X, et al. Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging. Biomaterials 2012; 33: 989-998. http://dx.doi.org/10.1016/j.biomaterials.2011.10.017
- [367] Shi X, Gong H, Li Y, Wang C, Cheng L, Liu Z. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials 2013; 34: 4786-4793. http://dx.doi.org/10.1016/j.biomaterials.2013.03.023

Received on 15-04-2013 Accepted on 07-05-2013 Published on 01-07-2013

DOI: http://dx.doi.org/10.6000/1929-2279.2013.02.03.3