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Abstract: Objective: This review aims to synthesize evidence on the efficacy and challenges of precision medicine
strategies in cancer treatment, focusing on their role in mitigating recurrence and enhancing patient-specific therapy.

Data Sources: Examination of current literature on precision medicine techniques such as immunotherapy (including
checkpoint inhibitors, adoptive cell therapy, and cancer vaccines), genetic and molecular profiling for personalized
treatment strategies, predictive biomarkers for selecting responsive patients, Al for improved diagnostic and prognostic
accuracy, and liquid biopsies for non-invasive monitoring of minimal residual disease.

Conclusion: Precision medicine in oncology offers a paradigm shift toward personalized care, potentially reducing cancer
recurrence through tailored treatment modalities. While immunotherapy introduces novel mechanisms to fight cancer, its
efficacy is sometimes limited by tumor evolution. Genetic and molecular profiling, along with predictive biomarkers,
enable the customization of therapy plans. Al and machine learning algorithms promise to refine detection, treatment,
and monitoring processes. Liquid biopsies emerge as a pivotal tool for early detection and surveillance of cancer
recurrence. Further research and clinical trials are crucial for integrating these advanced strategies into standard care,
aiming to enhance patient outcomes and minimize recurrence rates.
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INTRODUCTION

India experiences an annual increase of
approximately 4.5% to 5% in cancer cases. According
to the National Cancer Institute, the number of new
cancer cases per year is expected to rise to 23.6
million by 2030 [1]. Females are particularly affected by
certain types of cancer, with breast cancer and ovarian
cancer having the highest incidence rates globally. The
prevalence of different types of cancer in India is as
follows: Lung Cancer (36.5%), Esophagus (18.8%),
Urinary Bladder (15.3%), and Mouth (12.9%).
Alarmingly, it is projected that one out of every nine
individuals in India is at risk of developing cancer
during their lifetime [2]. Numerous issues, including
cytotoxicity, lack of selectivity, and multi-drug
resistance, make traditional clinical practice for cancer
patients in India extremely difficult to treat effectively
[3]. To maximize the care of cancer patients, there are
a few restrictions that must be considered [4]. To
overcome a limitations, Precision medicine strategy,
characterized by the customization of clinical strategies
based on individual patients' genomic, genetic,
behavioral, and environmental backgrounds, has
gained significant attention in the field of healthcare.
The advent of personalized approaches in cancer
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treatment, often referred to as precision medicine, has
revolutionized modern oncology [5]. This paradigm shift
acknowledges the uniqueness of each patient’s cancer,
thereby tailoring treatment strategies based on
individual genetic profiles and specific disease
characteristics. This approach has facilitated the
development of targeted therapies that focus on
specific genes and proteins integral to cancer growth
and survival, thereby enhancing treatment specificity
and minimizing collateral damage to healthy cells.
Consequently, personalized cancer treatment has
demonstrated improved treatment effectiveness and
reduced side effects [6]. Furthermore, it has paved the
way for predictive and preventive medicine by enabling
the prediction of cancer recurrence and facilitating early
detection of critical transitions in disease progression.
Despite the current limitation of personalized treatment
availability for all cancer types and subtypes, and its
predominant presence in clinical trials, it undeniably
represents a significant advancement in oncology. This
approach aims to overcome the limitations of traditional
clinical practices, which have been associated with
poor health outcomes and wastage of medical
resources.

2. CANCER RECURRENCE

Cancer recurrence is characterized as the
reappearance of cancer after a period in which no
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detectable signs were present, following the completion
of the initial treatment regimen [7]. This phenomenon
can occur after weeks, months, or even years and is
categorized into three types: local, regional, and distant
recurrence. Local recurrence happens when cancer
returns to the primary site or close to it. Regional
recurrence involves the reappearance of cancer in the
lymph nodes near the original tumor, whereas distant
recurrence, or metastasis, refers to the spread of
cancer to distant organs or tissues [8].

The underlying causes of cancer recurrence
primarily involve residual microscopic cancer cells that
might survive initial treatment efforts such as surgery,
chemotherapy, or radiation therapy [9]. These cells,
potentially possessing resistant characteristics, may
evade treatment and remain dormant, only to
proliferate later. Factors influencing the likelihood of
recurrence include the original tumor’s size and grade,
the stage of cancer at diagnosis, and the thoroughness
of the initial treatment. Moreover, genetic
predispositions and lifestyle choices such as smoking
can also affect recurrence risks [8,9].

According to Spring ef al. in their 2023 article in The
BMJ, the shift from adjuvant to neoadjuvant systemic
therapies in treating triple-negative breast cancer
(TNBC) allows for early, personalized treatment
adjustments based on tumor response, enhancing
survival and reducing recurrences. The study highlights
that patients achieving a pathological complete
response (pCR) from initial therapy show significantly
lower rates of recurrence and mortality, while those
with residual disease face increased risks, emphasizing
the need for customized postoperative treatments [10].

2.1. Traditional Approaches and Challenges

Traditional therapeutic strategies for managing and
preventing cancer recurrence primarily revolve around
three core methods: surgery, chemotherapy, and
radiation therapy, which have been foundational in
treating various types of cancer. Surgery, often
considered the first line of treatment, aims to remove
as much of the tumor as possible, particularly if the
cancer is localized and operable. Chemotherapy
involves the use of drugs designed to kill cancer cells
or stop them from growing and dividing; this can be
administered before surgery (neoadjuvant) to shrink
tumors, or after (adjuvant) to clear any remaining
cancerous cells. Radiation therapy, which uses high
doses of radiation to kill or shrink cancer cells, can also
be administered pre- or post-surgery and is often used
in conjunction with chemotherapy. Techniques such as

whole breast irradiation and hypofractionated radiation
therapy are particularly common in breast cancer
treatment [11,12].

Traditional cancer treatments such as
chemotherapy and  radiotherapy @ have  been
foundational in the fight against cancer but come with
significant limitations that impact both efficacy and
patient quality of life. One major issue is their non-
specificity, which results in damage not only to cancer
cells but also to rapidly dividing healthy cells. This lack
of precision leads to widespread cell damage, causing
side effects like nausea, hair loss, and increased
susceptibility to infections. As highlighted by Gyanani et
al., the indiscriminate nature of these treatments can
lead to severe and sometimes lasting physical
consequences, prompting a need for more targeted
therapeutic strategies that can differentiate between
healthy and cancerous cells (MDPI) [13].

Another critical challenge is the development of
drug resistance, where cancer cells adapt to overcome
the effects of chemotherapy. This resistance is often
mediated by genetic and epigenetic changes within
cancer cells, as discussed in the literature. For
example, epigenetic modifications can enable cancer
cells to withstand higher drug concentrations,
effectively decreasing the efficacy of standard
treatments over time. These adaptive responses
necessitate a deeper understanding and the
development of treatments that can circumvent or
target these resistance mechanisms directly, ensuring
that therapy remains effective over longer periods.

The current landscape of recurrence prevention in
cancer care, especially during the COVID-19 era, has
necessitated innovative adjustments across various
types of cancer treatments [15]. Strategies include the
use of novel therapies such as Heated Intraperitoneal
Chemotherapy (HIPEC) for aggressive cancers and
immunotherapy for pancreatic cancer [16]. Additionally,
advancements like TumorGlow technology for precision
tumor surgery highlight the ongoing adaptation of
cancer treatment protocols to ensure efficacy even in
challenging circumstances [16,17].

In parallel, the field of precision medicine is
revolutionizing recurrence prevention by tailoring
treatments to individual patient profiles, thereby
enhancing early detection, diagnosis, and treatment
effectiveness [18]. Despite significant progress,
including the integration of pharmacogenetics and
artificial intelligence in treatment planning, challenges
persist in translating these personalized approaches
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into widespread clinical practice. The main hurdles
include demonstrating the clinical value of these
therapies and integrating them effectively into
healthcare systems to improve patient outcomes
(Figure 1).

3. ADVANCES IN PRECISION MEDICINE

3.1. Genomic Profiling

In the burgeoning field of precision oncology,
genomic profiling emerges as a transformative
approach to customize cancer treatment and enhance
recurrence prevention strategies [19]. This technique
involves a detailed analysis of a tumor’s genetic
material, using advanced methods like next-generation
sequencing (NGS) to identify unique DNA and RNA
mutations and biomarkers. Such personalized genetic
insights enable oncologists to tailor treatments
specifically to the genetic abnormalities present in an
individual's tumor. For instance, by targeting specific
mutations with drugs such as EGFR inhibitors in lung
cancer or BRAF inhibitors in melanoma, treatments
become significantly more effective. This customization
not only boosts the efficacy of therapies but also
mitigates the risk of cancer recurrence by addressing
the tumor’s unique characteristics head-on.

However, the integration of genomic profiling into
clinical practice is fraught with challenges. The

complexity and sheer volume of genetic data require
robust bioinformatics tools for accurate interpretation,
posing a significant barrier in settings lacking
specialized expertise. Furthermore, logistical hurdles
such as the need for advanced technology and training
healthcare providers on genetic data use complicate its
widespread adoption. Despite these obstacles, the
potential benefits of genomic profiling are immense. It
allows for personalized surveillance plans post-
treatment, targeting specific genetic markers for early
detection of recurrence. Moreover, identifying genetic
predictors of recurrence can preemptively fine-tune
treatments to prevent the re-emergence of cancer,
thereby promising better patient outcomes [19].

Ethical and economic considerations also play a
critical role in the adoption of genomic profiling. The
cost-effectiveness of these advanced genetic tests is a
topic of ongoing debate, balancing the high upfront
costs against the potential for more effective, targeted
treatments that could reduce overall healthcare
expenditures. Additionally, ethical issues such as the
risk of genetic privacy breaches, discrimination, and
equitable access to genomic technologies must be
addressed. As genomic profiling continues to evolve, it
is expected that improvements in technology will
reduce costs and increase accessibility, making
personalized cancer therapy an achievable goal for a
broader population. This promises a future where
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cancer treatment is not only reactive but also proactive,
fundamentally altering how oncologists approach
cancer recurrence prevention [19].

3.2. Tumor Microenvironment

The TME, consisting of stromal cells and extra-
cellular matrix components, plays a crucial role in
cancer recurrence. The dynamic interactions between
cancer cells and their microenvironment stimulate
heterogeneity, clonal evolution, and increase multidrug
resistance, leading to cancer progression and meta-
stasis. The TME can facilitate tumor growth by provid-
ing nutrients, promoting angiogenesis, and enabling
immune evasion. Furthermore, the TME is implicated in
tumor initiation, metastasis, and recurrence [20].

3.3. Immune System Interactions and their Role in
Recurrence

The immune system can recognize and kill cancer
cells. However, cancer cells can evade immune
surveillance by inducing immunosuppressive changes
in the TME [21]. This immune evasion can lead to
therapy resistance and tumor recurrence. Moreover,
inflammation in the TME can cause an accumulation of
immune cells at the site, contributing to tumor
progression. Understanding these interactions can
provide insights into the development of more effective
cancer therapies [22].

3.4. Predictive Biomarkers for Targeted Therapy

Biomarkers are measurable indicators of biological
states or conditions and play a crucial role in predicting
cancer recurrence. These could be particular cells,
genes, gene products, hormones, chemicals, enzymes,
or substances present in tissues, blood, or urine
[23,24].

Genetic Markers Genetic markers are variations in
the DNA sequence that can be used to identify and
predict the risk of developing certain types of cancer.
For instance, Particularly, a group of genes was found
to be predictive of early relapse [25]. Particularly, a
group of genes was found to be predictive of early
relapse (CALM1, CALM2, CALM3, SRC, CDK1, and
MAPK1), but they also found genes that seem to
indicate the likelihood of a late relapse (ESR1, ESR2,
EGFR, BCL2, and AR) [26]. Convolutional Neural
Network (CNN) models have been used to classify
tumor and non-tumor samples into their designated
cancer types or as normal based on gene expression
profiles [27].

Proteomic and Metabolic Markers Proteomics has
grown in importance within the molecular sciences
because it offers useful insights into the characteristics,
levels of expression, and modifications of proteins [28].
Cancer proteomics has aided in the discovery of
therapeutic targets and biomarkers that are useful in
clinical settings. Conversely, metabolomics entails the
methodical identification and measurement of every
metabolite present in a particular organism or biological
specimen with the aim of investigating the correlation
between metabolites and various diseases, such as
cancer [29]. Aberrant metabolites, which are the end
products of biological metabolism and exhibit high
sensitivity to biological activity and pathological
conditions, have been considered for their potential to
predict response early with promising efficacy.
Predictive biomarkers can help identify patients likely to
benefit from specific therapies. In molecular pathology,
predictive biomarkers identify which patients are likely
to respond to targeted drugs [30,31]. These therapeutic
agents block specific molecules directly involved in
cancer growth, dedifferentiation and progression. When
evaluating potential anticancer agents, there is a
continued interest in using predictive biomarkers to
select patients likely to respond or be resistant to a
particular therapy.

Examples of therapeutic agents that block specific
molecules directly involved in cancer growth preventive
biomarkers:

* Lung cancer can be treated with Gefitinib (Iressa)
and Erlotinib (Tarceva), both of which target EGFR
mutations by blocking the EGFR tyrosine kinase in
non-small cell lung cancer [32].

+ Kidney cancer, despite the absence of identified
predictive biomarkers, is addressed with several
therapeutic agents: Sorafenib (Nexavar) targets the
RAF protein, Sunitinib (Sutent) and Pazopanib
(Votrient) inhibit the VEGF receptor, and Everolimus
(Afinitor) and Temsirolimus (Torisel) block the
mTOR protein [33].

« Multiple myeloma, also lacking specific biomarkers,
is treated with Bortezomib (Velcade) and
Carfilzomib (Kyprolis), which inhibit proteasomes,
and Lenalidomide (Revlimid), which enhances
immune function and blocks angiogenesis [34].

« Chronic myeloid leukemia with the BCR-ABL fusion
gene is treated with Imatinib (Gleevec), blocking the
BCR-ABL tyrosine kinase [35].
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» Breast cancer with HER2 protein overexpression is
targeted by Trastuzumab (Herceptin), which blocks
the HER2 protein [36].

+ Colorectal cancer treatments include Bevacizumab
(Avastin) for VEGF protein overexpression, blocking
the VEGF protein, and Cetuximab (Erbitux) for KRAS
wild-type status, blocking the EGFR protein [37].

* Non-Hodgkin’s lymphoma with CD20 protein
expression is ftreated with Rituximab (Rituxan),
which binds to the CD20 protein on B cells [38].

3.5. Imaging Techniques

Advanced imaging techniques are crucial in
predicting cancer recurrence. They include computed
tomography (CT), magnetic resonance imaging (MRI),
positron emission tomography (PET), and ultrasono-
graphy (US). These techniques are indispensable for
detecting the presence and monitoring the growth of
cancer, and assessing treatment responses. They are
recommended for staging, detecting lymph node
metastases, and local recurrence. Moreover, detailed
and precise imaging post-treatment is critical in
defining the presence and extent of residual disease
and in directing further treatment [39].

Radiomics and Its Application in Identifying
Recurrence Radiomics is a field that involves high-
throughput feature extraction from medical images,
enabling quantitative analysis of medical images and
prediction of various clinical endpoints [40]. It has
shown promising performance in diagnosis and
predicting treatment responses and prognosis.
Radiomics can help to formulate treatment plans for
patients and can also reduce the recurrence rate and
incidence of adverse effect. The combination of
genomics and radiomics offers a way to better
understand the molecular mechanism of tumor
pathogenesis and new evidence-based approaches to
characterize cancer patients, predict prognosis to guide
clinical decisions, and enhance the creation of
personalized treatment recommendations [41].

3.6. Genetic and Molecular Profiling for Recurrence
Risk Assessment

Genetic and molecular profiling can help predict
recurrence risk based on individual tumor biology.
Currently, there are no standard clinicopathologic
features that accurately predict which patients will
experience a recurrence [42]. According to a study
published in Nature Communications, Breslow tumor
thickness and mitotic rate were identified as the most

predictive  features for early-stage melanoma
recurrence [43]. There are several studies that applied
machine learning algorithms to predict and determine
the recurrence of cancer disease. For example,
researchers from the University of Wisconsin have
found that breast cancer stage and hormone receptor
status may help predict a person’s risk for their cancer
to recur. According to a study published in Nature
Communications, features related to cancer
recurrence, such as clinicopathological features and
images of tissues, were used to predict pancreatic
cancer recurrence [44].

The most promising field of study to forecast
recurrence risk based on the unique biology of each
tumor is molecular profiling. Molecular profiling can be
used to identify genetic mutations and other molecular
changes that are associated with cancer recurrence.
This information can be used to develop personalized
treatment plans that are tailored to the individual
patient's needs [45]. For example, patients with a high
risk of recurrence may benefit from more aggressive
treatment options such as chemotherapy or radiation
therapy. In addition, molecular profiling can also be
used to monitor patients for cancer recurrence after
treatment. By analyzing blood samples or other
biological samples for genetic mutations or other
molecular changes associated with cancer recurrence,
doctors can detect cancer recurrence earlier and
provide more effective treatment [46]. There are
several techniques for profiling such as (NGS) next-
generation sequencing, gene expression profiling, and
circulating tumor DNA analysis. NGS allows for
genome-wide profiling of methyl marks both at a
singlenucleotide and at a single-cell resolution. It offers
fresh and quick methods for characterizing and profiling
mRNAs, short RNAs, transcription factor regions,
chromatin structure, and DNA methylation patterns
throughout the entire genome [47]. Gene expression
profiling with NGS provides a better approach to gene
expression profiing with several advantages.
Circulating tumor DNA analysis is a non-invasive
method that can be used to detect cancer early on. It
involves the detection of tumor-derived DNA fragments
in the blood [48]. Scientists have identified numerous
DNA and genetic changes, such as variants, mutations,
or alterations, that contribute to the initiation, growth,
and metastasis of cancer. These changes can occur in
key genes involved in cell proliferation, DNA repair, and
tumor suppression pathways. Understanding these
genetic variations provides valuable insights into the
underlying mechanisms of cancer development and
recurrence [49].
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an underserved population.

diverse populations.

Table 1: Advancements in Cancer Treatment: Genomic Profiling, Tumor Microenvironment, Predictive Biomarkers,
and Al-Powered Recurrence Predictions
Author Cancer Type Key Findings Clinical Impact Ref.
o . - Enhanced patient matching to both approved and
Jordan et al., 2017 Lung_ Molecular charact_enzanon fac!||tates efficient emerging therapies, improving treatment [60]
Adenocarcinoma matching to therapies. .
specificity.
Non-Small Cell Rapid detection platform for multiple oncogenic Supports rapid treatment decisions, especially
Suetal., 2011 P ; p P 9 beneficial in settings requiring swift therapeutic [61]
Lung Cancer mutations relevant to targeted therapy. ) .
interventions.
MacConaill et al., Various Cancers Enterprise-level molecular_genotypipg enables Allows fpr pers_onalize_d treatment strategies 162]
2014 targeted therapeutic strategies. improving patient outcomes.
’ Non-Small Cell Genotyping and genomic profiling reveal Inform therapy choices and future therapeutic
Lietal., 2013 Lo : ’ e [63]
Lung Cancer implications for current and future therapies. developments, enhancing treatment precision.
Prospective clinical sequencing reveals mutational Facilitates the identification of genomic alterations
Zehir et al., 2017 Metastatic Cancer p ical sequencing reve ; that could be targeted by existing or emerging [64]
landscape, aiding in clinical decision-making. .
therapies.
- CGP tests guide treatment options and are " . .
Kanai et al., 2022 Biliary Tract integral in Japan's clinical practice for biliary tract Critical _for s_electln_g appropriate targeted [65]
Cancer cancer therapies, improving clinical outcomes.
The tumor microenvironment plays a significant Understanding TME dynamics could enhance the
Levantini et al., 2023 Lung Cancer role in the aggressiveness and resistance of lung targeting of anticancer therapies and improve [66]
cancer. prognosis.
Head and The study highlighted CXCL9 and SPP1 as key The findings could lead to better prognostic tools
Pittet et al., 2023 Neck Cancer markers in TME influencing macrophage polarity and targeted therapies in HNSCC based on TME [67]
and cancer prognosis. markers.
MicroRNAs within the TME influence drug Insights into microRNA roles could aid in
Sun et al., 2022 Breast Cancer resistance, particularly to anthracyclines, overcoming chemoresistance and tailoring breast [68]
suggesting potential as prognostic biomarkers. cancer treatments.
Hypoxia in the TME leads to immunosuppression Strategies targeting hypoxic TME could enhance
Chen et al., 2023 Various Cancers and metabolic reprogramming, impacting drug the efficacy of cancer therapies, particularly in [69]
efficacy and resistance. solid tumors.
Genome Medicine, Non-Small Cell TME remodeling revealed through single-cell RNA The-_ study provides a d_etalled view of TM.E.
) ] ” dynamics post-treatment, important for predicting [70]
2023 Lung Cancer sequencing after neoadjuvant immunotherapy.
treatment response.
Identified HSP90 as a target, with a machine Enhances the precision of prostate cancer
Wei et al., 2023 Prostate Cancer learning framework revealing predictive treatment by targeting HSP90 with tailored [71]
biomarkers for therapy response. therapeutic approaches.
Integration of human plasma proteome and Supports the development of targeted therapies
Shin et al., 2023 Colorectal Cancer genome data to identify novel protein biomarkers b %p . p 9 ; p [72]
for CRC. y identifying novel drug targets and biomarkers.
Immune checkpoint inhibitors' response correlated Facilitates the selection of patients likely to benefit
Fan et al., 2023 Colorectal Cancer with neutrophil-to-lymphocyte ratio, providing a from ICls, potentially improving treatment [73]
predictive marker. outcomes.
Identified exosome protein panels as predictive Early detection and timely prediction of NSCLC
Chu et al., 2023 Various Cancers biomarkers for NSCLC, indicating early tumor metastasis, improving patient stratification and [74]
metastasis potential. treatment planning.
Hematological Engineered TAAs to improve specificity in Enhances the efficacy and safety of targeted
Tan et al., 2023 h gl targeting CD33 for AML therapy, reducing off- therapies in AML, minimizing side effects [75]
Malignancies o . .
tumor toxicities. associated with treatment.
Comparison of various ML algonthms_ t-o predict Enhances early detection and relapse monitoring,
A breast cancer recurrence, emphasizing the } . . )
Lé et al. Breast Cancer : improving prognosis through tailored follow-up [76]
selection of the best model based on performance .
: strategies.
metrics.
Systematic investigation of ML algorithms for Supports clinical decision-making by improving the
Singh et al. Cervical Cancer survival prediction, highlighting the importance of accuracy of survival predictions and treatment [77]
precise model calibration and feature selection. personalization.
Review of deep learning techniques with genomic Facilitates the understanding of complex genomic
Minhyeok Lee Various Cancers data for cancer prognosis, underlining significant data, leading to better prognosis predictions and [78]
advancements and potential research directions. personalized treatments.
ML prediction of pathological complete response Improves prediction of treatment outcomes, aiding
Chen et al. Breast Cancer and overall survival, using diverse datasets from in the optimization of therapeutic approaches for [79]
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4. ARTIFICIAL INTELLIGENCE AND MACHINE
LEARNING FOR RECURRENCE PREDICTION

The integration of Al and ML in cancer diagnosis
and treatment has the potential to revolutionize medical
practices. These technologies can assist in predicting
cancer recurrence, assessing disease risk, and
personalizing treatment strategies [50]. By analyzing
large amounts of data, Al algorithms can identify
patterns and correlations that may not be apparent to
humans alone. This can improve the accuracy and
efficiency of cancer detection, aid in treatment
planning, and enhance prognosis prediction [51].

Here are some examples of studies that have used
machine learning algorithms to predict cancer
recurrence:

* (ANN) Artificial neural networks model is superior to
the other forecasting models in terms of accuracy in
predicting recurrence within 10 years after breast
cancer surgery [52].

« After surgery, patients with stage IV colorectal
cancer can use the four machine learning
algorithms to forecast their chance of a tumor
recurrence. GradientBoosting and gbm fared the
best among them.

* A histogram showing the steady increase in
published papers using machine learning methods
to predict cancer risk, recurrence and outcome.

Multi-omics data integration and clinical variables
have been wused for accurate recurrence risk
assessment. Here are some examples of studies that
have used multi-omics data integration and clinical
variables for accurate recurrence risk assessment:

* A study has shown that the integration of multi-
omics data and clinical variables can improve the
accuracy of recurrence risk assessment in breast
cancer.

* Another study has shown that the integration of
multi-omics data and clinical variables can improve
the accuracy of recurrence risk assessment in
colorectal cancer [53,54].

41. Liquid Biopsies for Early Detection of (MRD)
Minimal Residual Disease

Liquid biopsies are a type of blood test that can
detect cancer cells and DNA fragments that are
released into the bloodstream by cancer cells. These
tests can be used to detect (MRD) minimal residual

disease, which is the presence of cancer cells that
remain in the body after treatment [55].

According to a study published in Nature, The
development of highly sensitive liquid biopsy assays
has made it possible to identify and characterize MRD,
which is defined as the presence of tumor cells that
have spread from the primary lesion to distant organs
in patients without any radiological or clinical evidence
of metastasis or residual tumor cells that remain after
local therapy and ultimately cause a local recurrence
[56].

Circulating tumor DNA is a potent indicator that may
increase the chances of survival for (NSCLC) non-
small-cell lung cancer Utilizing assays based on next-
generation sequencing of plasma cell-free DNA,
several groups have demonstrated the capacity to
identify MRD after curative-intent treatment for non-
small cell lung cancer. Liquid biopsy could typically
detect (CTCs) circulating tumor cells, (ctDNA)
circulating tumor DNA, exosomes, (miRNA)
microRNAs, peripheral blood circulating RNA, (TEPs)
tumor-educated blood platelets, and (CTECs)
circulating tumor vascular endothelial cells. ctDNA is
one of the most commonly detected biomarkers [57].

4.2. Limitation

The systematic review, while comprehensive,
encountered several limitations both in the evidence
included and in the review processes employed. One
significant limitation of the evidence was the variable
quality of the studies reviewed, with some lacking
robust control groups, which could introduce bias into
the findings and affect the generalizability of the
results. Additionally, the majority of studies focused
predominantly on high-incidence cancers such as
breast and lung cancer, potentially limiting the
applicability of findings to less common cancer types.
In terms of the review process, although rigorous, it
was limited by language, as only articles published in
English from 2010 to 2024 were considered, excluding
potentially relevant studies published in other
languages or outside this date range. Furthermore, the
reliance on published literature might introduce
publication bias, as studies with positive outcomes are
more likely to be published than those with negative or
inconclusive results. This bias could skew the overall
findings of the review towards more favorable
outcomes, impacting the strength and reliability of the
conclusions drawn about the efficacy of precision
medicine strategies in preventing cancer recurrence.
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4.3. Emerging Technologies and Future Directions

Emerging technologies like single-cell sequencing,
epigenetic profiling, and spatial genomics hold promise
for personalized recurrence prevention in cancer.
These approaches enable a detailed analysis of
individual tumor cells, identification of epigenetic
alterations associated with recurrence risk, and
mapping of gene expression patterns within the tumor
microenvironment [58]. By understanding the
heterogeneity and spatial context of tumors, targeted
therapies can be developed to prevent recurrence
more effectively. Integrating these technologies into
clinical practice can lead to improved patient outcomes
through personalized treatment strategies. There are
ongoing clinical trials and research studies exploring
novel precision medicine strategies for cancer relapse.
For example, next-generation sequencing can help
identify novel cancer targets, but interpreting molecular
findings and accessing appropriate drugs or clinical
trials can be challenging. Multigene assays are widely
used to predict the risk of relapse after surgery.
Synthetic control arms in clinical trials are also being
used to evaluate the effectiveness of new treatments.
These strategies can help identify new treatments for
cancer relapse and improve patient outcomes [59].

5. CONCLUSION

Precision medicine strategies represent a
transformative shift in cancer treatment, focusing on
personalized approaches to reduce recurrence rates
and enhance patient outcomes. Key advancements
such as genetic and molecular profiling, predictive
biomarkers, liquid biopsies, and Al-driven technologies
are revolutionizing our understanding and management
of cancer recurrence. Immunotherapy and other
targeted therapies are proving to be crucial in providing
patient-specific  treatment options. Despite the
significant progress, further research, clinical trials, and
the integration of these innovations into standard care
are essential. By continuing to develop and refine these
strategies, we can achieve more precise, effective, and
personalized cancer care, ultimately reducing the
burden of cancer recurrence.
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mTOR = Mechanistic Target of Rapamycin
CNN = Convolutional Neural Network
ANN = Artificial Neural Network

NGS = Next-Generation Sequencing
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