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Abstract: Brain tumors are among the frequently diagnosed malignant conditions across all age groups. Accurately 
determining their grade has a major challenge for radiologists in clinical assessments and automatic diagnostic systems. 
Identifying tumor types and implementing preventive measures remains one of the most complex processes of brain 
tumor classification. Various Deep Learning (DL) models are proposed in the existing approaches for enhancing the 
accuracy of brain tumor classification. But, the challenges like training time and complexity are occurred in these works. 
To tackle these issues, this work presents a Enhanced DeepLabV3+ to segment and categorize brain tumor. At first, 
non-local means (NLM) filtering is utilized for pre-processing for reducing noise and preserving essential structural 
details. Then, the Enhanced DeepLabV3+ is employed for segmentation, with AlexNet is the backbone for segmentation 
tasks. To further refine the segmentation process, hyperparameter optimization of the DeepLabV3 architecture is 
conducted using the Osprey Optimization Algorithm (OOA) approach and provide significant improvements in brain 
tumor segmentation performance. The evaluation is performed on the Brain TCIA and Figshare datasets and achieved 
better accuracies of 98.97% and 99.23% respectively. 
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1. INTRODUCTION 

Brain tumors are among the most serious health 
conditions that affectss individuals worldwide. With 
respect to the World Health Organization (WHO), brain 
diseases are classified into different categories, 
including gliomas and glioblastomas, which are further 
divided into low grade tumor (LGT) and high-grade 
tumor (HGT) [1]. LGT, generally called as benign 
tumors, are less aggressive and do not significantly 
affect surrounding normal tissues. Then, HGT, also 
known as malignant tumors, are more severe. They 
spread rapidly to adjacent brain tissues and have a 
serious threat to life [2].  

For detecting and diagnosing brain tumors at the 
beginning phase, Magnetic Resonance Imaging (MRI) 
plays a major part and these modalities help in 
identifying tumor cells in the brain. This allows for 
timely medical intervention and improved treatment 
outcomes. Different MRI image processing techniques 
are utilized for analyzing the human brain features. 
This provides high-resolution imaging, enhanced soft 
tissue differentiation, and improved brightness [3]. 
Segmenting MRI brain images are important for 
enhancing diagnostic accuracy. But, the presence of 
noises, often introduced by image acquisition devices, 
can complicate the segmentation process [4].  
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MRI is a highly effective technique for capturing 
detailed brain structures; however, the factors like low 
spatial resolution, inhomogeneity, shape instability, and 
poor contrast can make the process more complex. 
Despite these limitations, segmentation remains a 
reliable and essential pre-processing step in Computer 
Aided Diagnosis (CAD). Because of the complicated 
anatomical structure of the brain, MRI images are 
mainly exploited in different medical applications [5]. 
Manual segmentation process is costly and time-
intensive; due to this, automated segmentation of 
tumor is preferable, particularly when dealing with large 
datasets. Despite its advantages, automatic tumor 
segmentation remains complex because of the 
significant changes in tumor location, shape, and 
structure [6]. Hence, implementing automatic tumor 
segmentation and grading from MRI can provide a 
valuable, non-invasive alternative for clinical field. This 
improves the betterment and accuracy in diagnosis of 
the tumor [7]. 

Different CAD techniques are used for segmenting 
medical images, with Deep Learning (DL) and 
classification being prominent examples [8]. DL is 
exploited for extracting features from images and 
classification approaches are presented for determining 
whether a tumor is present. Convolutional Neural 
Networks (CNNs) outperform traditional methods in 
accuracy, and the major benefit of CNNs depends in 
their ability to find important patterns and features from 
training images [9]. Similarly, architectures like 
AlexNet, InceptionNet, and EfficientNet have proven 
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effective for classification process and has significant 
potential for detecting brain diseases in clinical images 
[10]. These models are through a convolution multi-
layered network, which features several hidden layers 
and trainable parameters. All MRI input images are 
passes through a series of convolutional, pooling, 
filters, and output layers [11].  

This work proposes an enhanced DeepLabV3+ 
model integrated with the Osprey Optimization 
Algorithm (OOA) for brain tumor segmentation. The 
model considered non-local means (NLM) filtering for 
noise removal and AlexNet as the backbone for 
effective feature extraction. OOA is presented for 
optimizing hyperparameters of DeepLabV3+, and 
improves segmentation accuracy and boundary 
precision. The robustness of the suggested model is 
validated on two datasets; this demonstrates its 
potential as a reliable tool for supporting radiologists 
and advanced automated brain tumor diagnostic 
systems. The objectives are: 

• To present automated brain tumor segmentation 
and classification using an enhanced models. 

• To segment the lesions using DeepLabV3+ and 
AlexNet is considered as the backbone for 
segmentation tasks. 

• To present metaheuristic OOA approach and 
provide significant improvements in brain tumor 
segmentation performance. 

The rest sections are: Section 2 presents the recent 
works based on segmentation of the brain tumor; 
Section 3 presents the suggested segmentation of the 
brain tumor; Section 4 presents the analysis of the 
outcomes and Section 5 ends the work. 

2. RELATED WORKS 

Recent works based on segmentation of the brain 
tumor using different approaches like CNN based 
methods, hybrid approaches, and optimization based 
methods are listed here: 

2.1. CNN based Methods 

Ramtekkar et al. [16] presented CNN with different 
optimizations for brain tumor classification. Here, 
mean, median and Gaussian filters were used for pre-
processing; for achieving segmentation, threshold and 
histogram were utilized. Then, the Grey level co- 
occurrence matrix (GLCM) was applied for extracting 
relevant features. Different metaheuristic optimizations 

were used for selecting features and the CNN was 
used for disease classification. 

Farnoosh et al. [15] employed an iterative 
combination of Spectral Co-Clustering (SCC) and 
Fuzzy C Means (FCM) for achieving better brain tumor 
segmentation. For all iterations, SCC identified the 
tumor blocks and the selected blocks from the prior 
iteration was used as input for the next step. For the 
last iteration, FCM was applied to the final chosen 
block for precisely extracting the tumor and this 
iterative pseudo-DL process forms a layered structure. 

2.2. Hybrid Approaches 

Cheng et al. [12] presented Coarse to Fine Feature 
Model (CFFM) for semantic feature extraction and 
hierarchical features. Then, the Modality Cross 
Attentive Model (MCAM) was introduced that extracted 
complex features from various modalities and maps 
them into a fused semantic space. This enables the 
model to learn enriched cross-modal representations. 
Moreover, the Multi-Scale Context Perception (MSCP) 
was used for enhancing the ability of the model for 
capturing important lesions and preserving deep 
semantic details. Finally, the fusion of fine and coarse 
grained features provided better feature learning. 

Mi et al. [13] presented Diffusion network (DN) with 
Spatial Channel Attention Infusion (SCAI) and 
Frequency Spatial Attention (FSA) for achieving 
segmentation process. The DN was used for extracting 
multi-scale feature and the SCAI was used for 
extracting features from encoded layer. Then, the FSA 
was used for matching the condition features with the 
DA. At last, the cross model loss was used for 
supervising the features. 

Cekic et al. [14] presented MRI and surgical 
microscope images for brain tumor classification. The 
networks like ResNet50 and 101 were utilized in the 
Mask RCNN model for disease detection. DL models 
trained from images and the classification outcomes 
achieved for every patient was integrated with the 
weighted mean value.  

2.3. Optimization based Methods 

Devi et al. [17] suggested CNN with Long Short-
Term Memory (LSTM) for identifying tumor regions. 
Here, the Wavelet Packet Transform (SWPT) was 
applied for extracting relevant features. The Hybrid 
Adaptive Black Widow based Moth Flame Optimizer 
(HABW-MFO) was presented for selecting features. 
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Then, the Adaptive Kernel FCM (AK-FCM) for 
achieving better brain tumor segmentation. 

Mehnatkesh et al. [18] demonstrated brain tumor 
classification using residual learning model. ResNet 
was combined with an evolutionary algorithm for 
optimizing the hyperparameters. This existing approach 
eliminated the need for manual process and the 
Improved Ant Colony Optimizer (IACO) was used for 
enhancing optimization performance. This advanced 
process further improved the model’s potential for 
classifying brain tumors accurately. 

Despite these advances, some challenges are 
present in existing brain tumor segmentation methods. 
The existing models often achieve high accuracy but at 
the cost of significant computational demands, restrict 
their deployment in real-time clinical settings. Some 
models improve feature extraction and segmentation 
precision, but have high complexity and longer training 
times and less scalability. Standard optimization-
assisted approaches enhance parameter tuning and 
performance but still fail with robustness to noise and 
precise boundary delineation. Thus, current literatures 
show gaps in robustness, consistent accuracy over 
diverse datasets and emphasize the need for improved 
methods. To address these limitations, this work 
combines the DeepLabV3+ with OOA and aims to 
achieve improved segmentation accuracy, enhanced 
robustness and reduced computational cost. 

3. PROPOSED MODEL 

In medical diagnostics, the segmenting and brain 
tumors classification is a major part and makes early 
detection and proper treatment. In this work, the MRI 
images are pre-processed by the NLM for noise 
removal and standardizing intensity variations. The 
DeepLabV3+ model is integrated with the OOA for 
increasing segmentation performance. The OOA fine-
tunes the hyperparameters of DeepLabV3+ and 
provides optimal feature extraction and segmentation 
accuracy. Then, the optimized DeepLabV3+ model 

segments tumor regions and categorizes lesions into 
various classes. Figure 1 delineates the architecture of 
the brain tumor diagnosis process. 

3.1. Pre-Processing 

The input brain images are resized to 256 × 256 
pixels for ensuring consistency in processing. Then, the 
brain image undergoes a pre-processing step where 
the Regions of Interest (ROI) are determined for further 
process. This pre-processing is performed using a NLM 
filtering, which enhances image quality by minimizing 
noise and preserving important structural details. 
Consider a brain dataset D , has L  brain images and 
it is given as: 

D = Im n 1 ! n ! L{ }           (1) 

where Imn  is the nth image from the D . 

3.2. Segmentation 

DeepLabV3+ incorporates AlexNet as backbone for 
enhancing segmentation accuracy by utilizing their 
corresponding strengths in extracting features and 
preserving spatial information. As shown in Figure 2, 
there are two main components DeepLabV3+: encoder 
and decoder. The encoder is used for extracting 
features and minimizing feature map dimensionality. 
Then, the decoder refines edges and restores 
resolution for achieving better segmentation. 
DeepLabV3+ effectively separates images by 
integrating Dilated Convolution (DC) and Atrous Spatial 
Pyramid Pooling (ASPP), which improve boundary 
recognition. In this network, the AlexNet is backbone 
network which extracts essential features from the 
input image. Although, the networks like ResNet and 
EfficientNet provide higher representation ability, they 
need substantially high memory and training time. But, 
AlexNet offered a better balance between accuracy 
and computational efficiency. Further, AlexNet captures 
essential feature representations and preserving spatial 
features necessary for segmentation. By adjusting the 

 
Figure 1: Architecture of the suggested brain tumor diagnosis process. 
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backbone structure, the model enhances spatial 
information extraction and provides better 
segmentation performance. DC in the later layers of the 
backbone network helps in regulating the output 
feature map’s size. The ASPP then categorizes the 
output image pixels. Finally, the decoder applies 
transpose convolution for reconstructing the 
segmented image and restoring it to its original 
dimensions with improved accuracy.  

3.2.1. Parameter Optimization 

To improve the hyper-parameters of the 
DeepLabV3+, the metaheuristic OOA [19] is presented. 
The hyper-parameters like backbone network, learning 
rate, weight decay, dropout rate, loss function and 
epochs are optimized by the OOA using the fitness 
function. It is expressed as: 

fitness = Maximize Dice score( )          (2) 

The OOA mimics the hunting behaviour of ospreys 
and their strategy to capture fish from the sea. In this, 
an osprey initially determines the location of its prey 
before quickly fall to catch it and moving it to a better 
place. The mathematical modelling of the OOA models 
this natural hunting behaviour by splitting the 
optimization process into two key stages: exploration 
and exploitation. These stages simulate how ospreys 
search for prey and refine their hunting process. This 
allows the optimizer to efficiently navigate and optimize 
complex search spaces. The mathematical modelling 
of the OOA is explained in this section: 

Initialization: Every osprey presents a potential 
solution by assigning values to the problem parameters 
with respect to its position within the search space.  
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where j =1, 2, 3, ...., L k =1, 2, 3,...., n . Here, Y  is the 

Osprey population, Y j  is the j th  Osprey, z j,k  is the kth  
dimension, L  is the total Osprey and n  is the number 
of dimensions. 

Exploration: The hunting stage of the fish is the 
exploration and Ospreys are powerful predators with 
better vision. This enables them to detect fish beneath 
the water's surface. Once they locate their target, they 
swiftly dive and submerge to capture their prey. This 
movement improves the exploration capability, helping 
it locate optimum regions and avoid local optima. In this 
algorithm, osprey considers other individuals in the 
population with superior objective function values as 
fish submerged underwater. The group of fish position 
FPj  for j th  Osprey is determined by: 

FPj = Yl | l ! 1, 2, 3,...,M{ }"Gl < Gj{ }# Yb{ }         (4) 

where Yb  is the best Osprey.  

The osprey selects a target fish at random from the 
identified set and attack the prey. By simulating the 

 
Figure 2: Architecture of DeepLabV3+. 
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motion of the Osprey to its prey and the new position 
within the search space is computed as: 

z j,k
P1 = z j,k + rand j,k CFj,k ! I j,k " z j,k( )          (5) 

z j,k
P1 =

z j,k
P1, lowk ! z j,k

P1 ! upk
lowk, z j,k

P1 ! lowk
upk, z j,k

P1 > upk

"

#
$$

%
$
$

          (6) 

When the updated position provides a better value, 
it replaces the osprey’s prior position and it is 
expressed as:  

Z j =
Z j
P1,Gj

P1 <Gj

Z j ,elsewhere

!
"
#

$#
           (7) 

where Z j
P1

 
is the jth  Osprey’s new position, z j,k

P1
 
is the 

kth  dimension of the Osprey, Gj
P1

 
is the objective 

value, CFj,k  
is the chosen fish for the jth  Osprey at the 

kth  dimension, and I j,k  
is the random number. 

Exploitation: In this stage, the motion of the ospreys 
toward a safer position introduces slight adjustments in 
its location within the search space. These small 
variations enhance the exploitation ability and allow for 
a better local search and convergence toward optimal 
solutions. 

In this optimizer, the Osprey’s natural characteristic 
is simulated by first generating a new random position 
and safe location to consume its prey is given as: 

z j,k
P2 = z j,k +

lowk + rand j,k upk ! lowk( )
s

         (8) 

where s = {1, 2,3,...,S} ; s  is the iteration count and S  is 
the overall iterations. 
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where Z j
P2

 
is the jth  Osprey’s new position, z j,k

P2
 
is the 

kth  dimension of the Osprey, 

When the updated position provides a better value, 
it replaces the osprey’s prior position and it is 
expressed as:  

Z j =
Z j
P2,Gj

P2 <Gj

Z j ,elsewhere

!
"
#

$#
         (10) 

where Gj
P2

 
is the objective value. Algorithm 1 shows 

the Pseudocode of the OOA to update the parameters 
of the DeepLabV3+. 

Algorithm 1: Pseudocode of the OOA 

Input: Population size, Ospreys and iterations 

Output: Best Osprey Yb  

Initialize the population by Equations (5) and (6) 

Evaluate the fitness by Equation (2) 

For s =1  to S  

For k =1  to M  

Stage 1: Exploration 

Position of the fish is updated by 
FPj = Yl | l ! 1,2,3,...,M{ }"Gl <Gj{ }# Yb{ }  

The new position within the search space is computed 
by z j,k

P1 = z j,k + rand j,k CFj,k ! I j,k " z j,k( )  

Initialize the boundary condition by 

z j,k
P1 =
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Update jth Osprey by Z j =
Z j
P1,Gj

P1 <Gj

Z j ,elsewhere

!
"
#

$#
 

Stage 2: Exploitation 

Position of the fish is updated by 

z j,k
P2 = z j,k +

lowk + rand j,k upk ! lowk( )
s

 

Initialize the boundary condition by 

z j,k
P2 =

z j,k
P2, lowk ! z j,k

P2 ! upk
lowk, z j,k

P2 ! lowk
upk, z j,k

P2 > upk

"

#
$$

%
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$

 

Update jth  Osprey by Z j =
Z j
P2,Gj

P2 <Gj

Z j ,elsewhere

!
"
#

$#
 

end  

Save the best solution  
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4. RESULTS ANALYSIS 

The following section show the results analysis of 
the proposed and existing model for showing the 
efficiency of the suggested work. 

4.1. Implementation Details 

The DeepLabV3+ model, integrated with OOA for 
brain tumor segmentation, is implemented using 
Python software. This process is executed on a 
computer running a 64-bit operating system, featuring 8 
GB of RAM and Intel i5 processor. All experiments are 
demonstrated by 5-fold cross-validation for ensuring 
robustness. The reported outcomes represent the 
average performance across folds. 

4.2. Datasets 

There are two datasets like brain TCIA [20] and 
Figshare [21]. 

The brain MRI dataset consists of brain MRI scans 
accompanied by manually segmented Fluid Attenuated 
Inversion Recovery (FLAIR) abnormal images. The 

images were gathered from The Cancer Imaging 
Archive (TCIA) and have data from 110 patients. Each 
patient has at least one FLAIR sequence available, 
along with corresponding genomic clustered data.  

The Figshare brain tumor data has 3,064 images 
obtained from 233 patients. It comprises 3 kinds of 
brain tumors: 708 images (meningioma), 1,426 images 
(glioma), and 930 images (pituitary tumor). Figure 3 
shows the sample images of the TCIA and Figshare 
datasets. 

4.3. Hyperparameters 

Table 1 depicts the hyper-parameters of the 
suggested model. The backbone network is AlexNet, a 
learning rate of 0.001 and a weight decay of 0.0001 are 
chosen for proving stable convergence during training. 
For overcoming overfitting, a dropout rate of 0.3 is 
chosen, the Dice loss function is used, and the model 
is trained over 100 epochs to achieve optimal 
performance. The performance of the DeepLabV3+ 
model is based on fine-tuning of the several 
hyperparameters. Initially, default or manually chosen 

 
Figure 3: Sample images of the TCIA and Figshare datasets. 

 

Table 1: Hyper-Parameters 

Hyper-parameters Before Optimization (Initial Value) After OOA Optimization (Optimized Value) 

Backbone Network ResNet AlexNet 

Learning Rate 0.01 0.001 

Weight Decay 0.0005 0.0001 

Dropout Rate 0.5 0.3 

Loss Function Dice Dice 

Epochs 50 50 
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values are utilized for training. Finally, the network’s 
optimization weights are performed using the OOA. 

4.4. Qualitative Analysis 

The following section shows the qualitative analysis 
on the two datasets like TCIA and Figshare. Here, the 
analysis is performance is evaluated for the 
approaches like FCM, UNet, DeepLabV3 and proposed 
(DeepLabV3+ with OOA). 

Figures 4 and 5 delineates the qualitative analysis 
of input, Ground Truth (GT), FCM, UNet, DeepLabV3 

and proposed (DeepLabV3+ with OOA) on the TCIA 
and Figshare datasets. The input images, Ground 
Truth (GT), and segmented outputs from all 
approaches are visually analyzed for assessing their 
accuracy in segmenting lesions. FCM, being a 
clustering based model, generally shows over-
segmentation, the UNet and DeepLabV3 show 
improved segmentation but fails in boundary precision. 
Finally, the proposed DeepLabV3+ with OOA provided 
superior performance, preserved fine details and match 
with the GT. This shows its effectiveness in 
segmentation accuracy enhancement. 

 
Figure 4: Analysis of (a) Input, (b) GT, (c) FCM, (d) UNet, (e) DeepLabV3 and (f) proposed on the TCIA dataset. 

 

 
Figure 5: Analysis of (a) Input, (b) GT, (c) FCM, (d) UNet, (e) DeepLabV3 and (f) proposed on the Figshare dataset. 
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4.5. Ablation Study 

The following section defines the ablation study with 
respect to the segmentation approaches like FCM, 
UNet, DeepLabV3 and proposed (DeepLabV3+ with 
OOA). Different performance measures like Accuracy, 
Sensitivity, Specificity, Precision, Dice and Intersection 
of Union (IoU) are compared.  

 
Figure 6: Accuracy comparison. 

Figure 6 presents the accuracy comparison of 
different segmentation models like FCM, UNet, 
DeepLabV3 and proposed (DeepLabV3+ with OOA). 
Accuracy values attained by the FCM, UNet, 
DeepLabV3 and proposed models are 94.94%, 96%, 
98.08% and 99.05% on the TCIA dataset. Similarly, an 
accuracy value achieved by the FCM is 93.8%, UNet is 
95.1%, DeepLabV3 is 98.1% and proposed model is 
99.14% on the Figshare dataset. By integrating the 
better feature extraction and segmentation capacity of 
DeepLabV3+ with the hyperparameter optimization 
strength of OOA, the suggested model attained 
superior performance in brain segmentation. The 
integration of OOA provides optimum weight tuning, 
improved boundary precision, high robustness to noise, 
and better convergence. 

Figure 7 presents the precision comparison of 
different segmentation models like FCM, UNet, 
DeepLabV3 and proposed (DeepLabV3+ with OOA). A 
large precision value shows that the segmentation 
model is highly efficient at accurately showing the 
targeted regions without misclassifying irrelevant 
structures. Precision values attained by the suggested 
model are 99.12% (TCIA) and 99.09% (Figshare) 
datasets respectively. 

Figure 8 presents the sensitivity comparison of 
different segmentation models like FCM, UNet, 

DeepLabV3 and proposed (DeepLabV3+ with OOA). 
Sensitivity values attained by the FCM, UNet, 
DeepLabV3 and proposed models are 93.65%, 97.9%, 
98.3% and 99.34% on the TCIA dataset. Then, 
sensitivity value achieved by the FCM is 95.87%, UNet 
is 97.7%, DeepLabV3 is 98.65% and proposed model 
is 99.42% on the Figshare dataset. These results 
presents that the merging of the OOA with 
DeepLabV3+ is major in refining the segmentation. The 
OOA assists in optimizing parameters of the model, 
and enhancing the feature extraction capabilities. 
Consequently, the proposed model outperformed 
conventional methods like FCM, UNet, and 
DeepLabV3. This demonstrates its reliability and 
robustness in brain image segmentation process. 

 
Figure 7: Precision comparison. 

 

 
Figure 8: Sensitivity comparison. 

Figure 9 presents the specificity comparison of 
different segmentation models. Higher value of 
specificity depicts that the model is efficiently 
differentiating relevant and non-relevant areas. The 
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suggested model maintained a better balance between 
detecting actual segmented areas. Specificity values 
attained by the suggested model are 99.59% (TCIA) 
and 99.3% (Figshare) datasets respectively.  

 
Figure 9: Specificity comparison. 

 

 
Figure 10: Dice comparison. 

Figure 10 presents the dice comparison of different 
segmentation models. The high value of the dice score 
shows a greater degree of similarity among the 
segmented and the GT image. This analysis 
showcases how all approaches perform in terms of 
dice similarity. Dice values attained by the FCM, UNet, 
DeepLabV3 and proposed models are 94.65%, 
96.91%, 97.08% and 98.97% on the TCIA dataset. 
Then, dice value achieved by the FCM is 93.3%, UNet 
is 96.7%, DeepLabV3 is 97.1% and proposed model is 
99.23% on the Figshare dataset. 

Figure 11 presents the IoU comparison of different 
segmentation models. The analysis shows every 
segmentation model performs with respect to the IoU 
and presenting their superiority in accurately finding 

and segmenting lesions. Conventional models like 
FCM, UNet, DeepLabV3 exhibited lower IoU scores 
because of their susceptibility to noise and difficulty in 
preserving fine details. IoU scores attained by the 
suggested model are 99.59% (TCIA) and 99.3% 
(Figshare) datasets respectively.  

 
Figure 11: IoU comparison. 

 

Table 2 presents the comparative of filtering 
methods, segmentation models, backbone networks, 
and optimization algorithms. NLM + Enhanced 
DeepLabV3+ (AlexNet + OOA) achieves the highest 
performance across all metrics, showing the 
effectiveness of using NLM filtering with the Enhanced 
DeepLabV3+ model and OOA optimization. It is 
observed that NLM + Enhanced DeepLabV3+ (AlexNet 
+ OOA) obtained the better performance across entire 
measures. This proves its effectiveness in brain tumor 
segmentation. Comparison with Gaussian and Median 
filtering, NLM better preserves structural details while 
reducing noise which lead to improved segmentation 
accuracy. Further, DeepLabV3+ with AlexNet 
outperformed other segmentation models like U-Net 
(ResNet-50) and DeepLabV3 with MobileNet or 
InceptionNet. When comparing optimization 
techniques, OOA provided superior outcomes over 
Genetic algorithm (GA), particle swarm Optimization 
(PSO), Arithmetic optimization algorithm (AOA) and 
Salp Swarm Optimization (SSA). This highlights its 
process in refining hyperparameters for optimal 
segmentation. These analyses proved that combining 
NLM filtering, Enhanced DeepLabV3+, AlexNet, and 
OOA optimization offers a better approach for efficient 
brain tumor segmentation and classification. 

Table 3 illustrates the comparative analysis of 
different segmentation models with respect to different 
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measures. Each value is reported as mean ± 95% 
confidence interval, averaged over 5-fold cross-
validation. The outcomes proved that the proposed 
method achieved the highest performance across all 
evaluation measures, with Dice scores of 98.97% 
(TCIA) and 99.23% (Figshare). Table 4 compares the 
training time per epoch and memory usage of different 
models. The proposed DeepLabV3+ with OOA 
achieved the best trade-off and required only 21.2 
seconds per epoch and 2.1 GB of memory. Thus, the 
proposed method is more accurate and 
computationally efficient. 

4.6. Comparison with Recent Works  

Table 5 shows the comparative analysis with 
different works like [12-18] with the proposed model. It 
is noted from the analysis that the suggested model 
outperformed all the approaches due to the integration 
of DeepLabV3+ and OOA. Thus, it is proved that the 
suggested approach can be utilized for brain tumor 
diagnosis. The comparison of brain tumor 
segmentation techniques highlights three main 
approaches: handcrafted features, CNN-based 
methods, and hybrid approaches. Handcrafted feature 
methods benefit from domain knowledge and are 

Table 2: Comparative Analysis 

Methods Dice (%) Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) IoU (%) 

Gaussian Filter + DeepLabV3+ 
(AlexNet + GA) 

97.32 98.76 97.83 98.94 97.58 92.71 

NLM + DeepLabV3+ (VGG16 + 
PSO) 

97.1 98.6 97.5 98.7 98.2 94.5 

Median Filter + DeepLabV3 
(MobileNet + OOA) 

98.6 97.5 98.7 97.1 98.9 95.5 

NLM + U-Net (ResNet-50 + AOA) 98.7 98.1 97.3 98.5 98.8 96.1 

Median Filter + DeepLabV3 
(InceptionNet + SSA) 

98.9 98.4 97.9 98.7 99.0 97.4 

Gaussian Filter + DeepLabV3+ 
(AlexNet + OOA) 

98.7 98.1 98.3 99.1 98.8 97.9 

NLM + Enhanced DeepLabV3+ 
(AlexNet + OOA) 

99.23 99.14 99.42 99.3 99.09 99.3 

 
Table 3: Performance Comparison with Statistical Validation 

Methods Dice (%)±  CI 
Accuracy 
(%)±  CI 

Sensitivity 
(%)±  CI 

Specificity 
(%)±  CI 

Precision (%)±  
CI IoU (%)±  CI 

FCM 94.65 ±  0.42 94.94 ±  0.38 93.65 ± 0.51 95.12 ±  0.47 94.72 ±  0.44 90.21 ±  0.39 

UNet 96.91 ± 0.35 96.00 ± 0.33 97.90 ± 0.40 97.25 ±  0.41 97.01 ±  0.38 92.10 ±  0.37 

DeepLabV3 97.08 ±  0.28 98.08 ±  0.29 98.30 ±  0.31 98.40 ±  0.32 98.15 ±  0.28 95.30 ±  0.30 

Proposed 
(DeepLabV3+ + OOA, 

TCIA) 
98.97 ± 0.25 99.05 ±  0.22 99.34 ±  0.27 99.59 ± 0.21 99.12 ±  0.23 99.59 ±  0.24 

Proposed 
(DeepLabV3+ + OOA, 

Figshare) 
99.23 ±  0.21 99.14 ± 0.20 99.42 ±  0.24 99.30 ±  0.22 99.09 ±  0.21 99.30 ±  0.22 

Table 4: Comparison of Computational Cost 

Models Training Time / Epoch (s) Memory Usage (GB) 

FCM 25.1 3.5 

UNet 110.6 4.2 

DeepLabV3 150.3 4.8 

Proposed (DeepLabV3+ + OOA) 21.2 2.1  
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compatible with traditional machine learning algorithms. 
However, they are sensitive to intensity variations and 
require manual tuning, which can limit scalability and 
performance. CNN-based methods offer automatic 
feature learning, robustness to intensity changes, and 
deliver high precision and accuracy. Despite these 
strengths, they are computationally expensive, depend 
on large annotated datasets, and may lack 
interpretability. Hybrid approaches aim to combine the 
advantages of both handcrafted and CNN-based 
techniques, leading to improved performance and 
potentially greater interpretability. 

5. DISCUSSION 

The proposed DeepLabV3+ integrated with the 
OOA shown better segmentation performance 
compared to methods FCM, UNet, and baseline 
DeepLabV3. Instead of focusing only on the 
quantitative improvements, the significance of these 
outcomes is based on their potential clinical impact. By 
achieving more precise boundary representation and 
more robust to noise, the method could provide 
radiologists with more reliable tumor localization. 
Further, it supports decision-making, reduces 
diagnostic errors, and improves treatment planning. 
Moreover, the near-real-time execution of the model 
suggests the feasibility of deployment in hospital 
workflows, where automated assistance could improve 
MRI analysis and overcomes workload of the 
radiologists. 

Although, promising results has been achieved by 
the suggested model, certain limitations must be 
acknowledged. First, the present work is on the basis 

of the 2D MRI slices, which may not entirely capture 
volumetric tumor characteristics. The suggested model 
will be extended to 3D volumetric segmentation would 
provide more comprehensive spatial information for 
diagnosis. Second, even though the model performed 
well on TCIA and Figshare datasets, the dataset sizes 
remain relatively modest for requirements of the DL 
model. This raise problem about the generalizability of 
the model to larger and more diverse clinical 
populations. Third, the absence of external clinical 
validation restricts the direct applicability of the model 
in real-time hospital settings. Addressing these 
limitations through multimodal MRI integration, larger-
scale datasets, and external validation studies will be 
major stages to clinical translation. 

6. CONCLUSION 

This work presented an enhanced model to 
segment and classifies the brain tumors using the 
DeepLabV3+ with OOA model. in the DeepLabV3+ 
model, the AlexNet was considered as the backbone. 
The integration of this approach has significantly 
enhanced the brain tumor segmentation performance 
by optimizing model parameters and enhancing feature 
extraction. The OOA further optimized the 
hyperparameters of the DeepLabV3+ and ensured 
better segmentation performance. Comparison of the 
suggested model with existing models like FCM, UNet, 
and DeepLabV3, provided that the proposed method 
obtained superior performance with respect to different 
measures on two datasets. As a result, the suggested 
model achieved better segmentation and suitable for 
real-time analysis. The present segmentation is 
performed on 2D MRI slices. Future work will focus on 
extending the suggested model to multimodal MRI for 

Table 5: Comparison with Recent Works 

References Dice (%) Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) IoU (%) 

 [12] 95 - - - - - 

 [13] 91.87 - 92.29 99 - 84.96 

 [14] 91 - 93 - 96 84 

[15] 81.42 99.12 80 98 - - 

[16] - 98.9 - - - - 

 [17] - 96 - - 96 - 

 [18] - 98.6 - - - - 

Proposed (TCIA)  98.97 99.05 99.34 99.59 99.12 99.59 

Proposed 
(Figshare dataset) 

99.23 99.14 99.42 99.3 99.09 99.3 



Brain Tumor Segmentation using Osprey Optimization Assisted DeepLabV3+ Model Journal of Cancer Research Updates, 2025, Vol. 14     139 

capturing complementary information across imaging 
modalities, investigating more diverse clinical datasets. 
This provides robustness, generalizability, and 
investigating real-time deployment in clinical workflows 
for supporting radiologists in practice. Moreover, 
expanding the method toward 3D volumetric 
segmentation and explainable AI techniques will further 
improve clinical relevance and interpretability. 
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