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Abstract: Brain tumors are among the frequently diagnosed malignant conditions across all age groups. Accurately
determining their grade has a major challenge for radiologists in clinical assessments and automatic diagnostic systems.
Identifying tumor types and implementing preventive measures remains one of the most complex processes of brain
tumor classification. Various Deep Learning (DL) models are proposed in the existing approaches for enhancing the
accuracy of brain tumor classification. But, the challenges like training time and complexity are occurred in these works.
To tackle these issues, this work presents a Enhanced DeeplLabV3+ to segment and categorize brain tumor. At first,
non-local means (NLM) filtering is utilized for pre-processing for reducing noise and preserving essential structural
details. Then, the Enhanced DeepLabV3+ is employed for segmentation, with AlexNet is the backbone for segmentation
tasks. To further refine the segmentation process, hyperparameter optimization of the DeeplLabV3 architecture is
conducted using the Osprey Optimization Algorithm (OOA) approach and provide significant improvements in brain
tumor segmentation performance. The evaluation is performed on the Brain TCIA and Figshare datasets and achieved

better accuracies of 98.97% and 99.23% respectively.
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1. INTRODUCTION

Brain tumors are among the most serious health
conditions that affectss individuals worldwide. With
respect to the World Health Organization (WHO), brain
diseases are classified into different categories,
including gliomas and glioblastomas, which are further
divided into low grade tumor (LGT) and high-grade
tumor (HGT) [1]. LGT, generally called as benign
tumors, are less aggressive and do not significantly
affect surrounding normal tissues. Then, HGT, also
known as malignant tumors, are more severe. They
spread rapidly to adjacent brain tissues and have a
serious threat to life [2].

For detecting and diagnosing brain tumors at the
beginning phase, Magnetic Resonance Imaging (MRI)
plays a major part and these modalities help in
identifying tumor cells in the brain. This allows for
timely medical intervention and improved treatment
outcomes. Different MRI image processing techniques
are utilized for analyzing the human brain features.
This provides high-resolution imaging, enhanced soft
tissue differentiation, and improved brightness [3].
Segmenting MRI brain images are important for
enhancing diagnostic accuracy. But, the presence of
noises, often introduced by image acquisition devices,
can complicate the segmentation process [4].
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MRI is a highly effective technique for capturing
detailed brain structures; however, the factors like low
spatial resolution, inhomogeneity, shape instability, and
poor contrast can make the process more complex.
Despite these limitations, segmentation remains a
reliable and essential pre-processing step in Computer
Aided Diagnosis (CAD). Because of the complicated
anatomical structure of the brain, MRI images are
mainly exploited in different medical applications [5].
Manual segmentation process is costly and time-
intensive; due to this, automated segmentation of
tumor is preferable, particularly when dealing with large
datasets. Despite its advantages, automatic tumor
segmentation remains complex because of the
significant changes in tumor location, shape, and
structure [6]. Hence, implementing automatic tumor
segmentation and grading from MRI can provide a
valuable, non-invasive alternative for clinical field. This
improves the betterment and accuracy in diagnosis of
the tumor [7].

Different CAD techniques are used for segmenting
medical images, with Deep Learning (DL) and
classification being prominent examples [8]. DL is
exploited for extracting features from images and
classification approaches are presented for determining
whether a tumor is present. Convolutional Neural
Networks (CNNs) outperform traditional methods in
accuracy, and the major benefit of CNNs depends in
their ability to find important patterns and features from
training images [9]. Similarly, architectures like
AlexNet, InceptionNet, and EfficientNet have proven

© 2025 Neoplasia Research



Brain Tumor Segmentation using Osprey Optimization Assisted DeepLabV3+ Model

Journal of Cancer Research Updates, 2025, Vol. 14 129

effective for classification process and has significant
potential for detecting brain diseases in clinical images
[10]. These models are through a convolution multi-
layered network, which features several hidden layers
and trainable parameters. All MRI input images are
passes through a series of convolutional, pooling,
filters, and output layers [11].

This work proposes an enhanced DeeplLabV3+
model integrated with the Osprey Optimization
Algorithm (OOA) for brain tumor segmentation. The
model considered non-local means (NLM) filtering for
noise removal and AlexNet as the backbone for
effective feature extraction. OOA is presented for
optimizing hyperparameters of DeeplLabV3+, and
improves segmentation accuracy and boundary
precision. The robustness of the suggested model is
validated on two datasets; this demonstrates its
potential as a reliable tool for supporting radiologists
and advanced automated brain tumor diagnostic
systems. The objectives are:

. To present automated brain tumor segmentation
and classification using an enhanced models.

. To segment the lesions using DeepLabV3+ and
AlexNet is considered as the backbone for
segmentation tasks.

. To present metaheuristic OOA approach and
provide significant improvements in brain tumor
segmentation performance.

The rest sections are: Section 2 presents the recent
works based on segmentation of the brain tumor;
Section 3 presents the suggested segmentation of the
brain tumor; Section 4 presents the analysis of the
outcomes and Section 5 ends the work.

2. RELATED WORKS

Recent works based on segmentation of the brain
tumor using different approaches like CNN based
methods, hybrid approaches, and optimization based
methods are listed here:

2.1. CNN based Methods

Ramtekkar et al. [16] presented CNN with different
optimizations for brain tumor classification. Here,
mean, median and Gaussian filters were used for pre-
processing; for achieving segmentation, threshold and
histogram were utilized. Then, the Grey level co-
occurrence matrix (GLCM) was applied for extracting
relevant features. Different metaheuristic optimizations

were used for selecting features and the CNN was
used for disease classification.

Farnoosh et al. [15] employed an iterative
combination of Spectral Co-Clustering (SCC) and
Fuzzy C Means (FCM) for achieving better brain tumor
segmentation. For all iterations, SCC identified the
tumor blocks and the selected blocks from the prior
iteration was used as input for the next step. For the
last iteration, FCM was applied to the final chosen
block for precisely extracting the tumor and this
iterative pseudo-DL process forms a layered structure.

2.2. Hybrid Approaches

Cheng et al. [12] presented Coarse to Fine Feature
Model (CFFM) for semantic feature extraction and
hierarchical features. Then, the Modality Cross
Attentive Model (MCAM) was introduced that extracted
complex features from various modalities and maps
them into a fused semantic space. This enables the
model to learn enriched cross-modal representations.
Moreover, the Multi-Scale Context Perception (MSCP)
was used for enhancing the ability of the model for
capturing important lesions and preserving deep
semantic details. Finally, the fusion of fine and coarse
grained features provided better feature learning.

Mi et al. [13] presented Diffusion network (DN) with
Spatial Channel Attention Infusion (SCAI) and
Frequency Spatial Attention (FSA) for achieving
segmentation process. The DN was used for extracting
multi-scale feature and the SCAIl was used for
extracting features from encoded layer. Then, the FSA
was used for matching the condition features with the
DA. At last, the cross model loss was used for
supervising the features.

Cekic et al. [14] presented MRI and surgical
microscope images for brain tumor classification. The
networks like ResNet50 and 101 were utilized in the
Mask RCNN model for disease detection. DL models
trained from images and the classification outcomes
achieved for every patient was integrated with the
weighted mean value.

2.3. Optimization based Methods

Devi et al. [17] suggested CNN with Long Short-
Term Memory (LSTM) for identifying tumor regions.
Here, the Wavelet Packet Transform (SWPT) was
applied for extracting relevant features. The Hybrid
Adaptive Black Widow based Moth Flame Optimizer
(HABW-MFQO) was presented for selecting features.
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Then, the Adaptive Kernel FCM (AK-FCM) for
achieving better brain tumor segmentation.

Mehnatkesh et al. [18] demonstrated brain tumor
classification using residual learning model. ResNet
was combined with an evolutionary algorithm for
optimizing the hyperparameters. This existing approach
eliminated the need for manual process and the
Improved Ant Colony Optimizer (IACO) was used for
enhancing optimization performance. This advanced
process further improved the model's potential for
classifying brain tumors accurately.

Despite these advances, some challenges are
present in existing brain tumor segmentation methods.
The existing models often achieve high accuracy but at
the cost of significant computational demands, restrict
their deployment in real-time clinical settings. Some
models improve feature extraction and segmentation
precision, but have high complexity and longer training
times and less scalability. Standard optimization-
assisted approaches enhance parameter tuning and
performance but still fail with robustness to noise and
precise boundary delineation. Thus, current literatures
show gaps in robustness, consistent accuracy over
diverse datasets and emphasize the need for improved
methods. To address these limitations, this work
combines the DeepLabV3+ with OOA and aims to
achieve improved segmentation accuracy, enhanced
robustness and reduced computational cost.

3. PROPOSED MODEL

In medical diagnostics, the segmenting and brain
tumors classification is a major part and makes early
detection and proper treatment. In this work, the MRI
images are pre-processed by the NLM for noise
removal and standardizing intensity variations. The
DeepLabV3+ model is integrated with the OOA for
increasing segmentation performance. The OOA fine-
tunes the hyperparameters of DeeplLabV3+ and
provides optimal feature extraction and segmentation
accuracy. Then, the optimized DeeplLabV3+ model

Image resizing

segments tumor regions and categorizes lesions into
various classes. Figure 1 delineates the architecture of
the brain tumor diagnosis process.

3.1. Pre-Processing

The input brain images are resized to 256 x 256
pixels for ensuring consistency in processing. Then, the
brain image undergoes a pre-processing step where
the Regions of Interest (ROI) are determined for further
process. This pre-processing is performed using a NLM
filtering, which enhances image quality by minimizing
noise and preserving important structural details.
Consider a brain dataset 2, has Z brain images and
it is given as:

D={lm, lsnsl} (1)

where Im,, is the #” image from the 2.
3.2. Segmentation

DeepLabV3+ incorporates AlexNet as backbone for
enhancing segmentation accuracy by utilizing their
corresponding strengths in extracting features and
preserving spatial information. As shown in Figure 2,
there are two main components DeepLabV3+: encoder
and decoder. The encoder is used for extracting
features and minimizing feature map dimensionality.
Then, the decoder refines edges and restores
resolution for achieving better segmentation.
DeepLabV3+ effectively separates images by
integrating Dilated Convolution (DC) and Atrous Spatial
Pyramid Pooling (ASPP), which improve boundary
recognition. In this network, the AlexNet is backbone
network which extracts essential features from the
input image. Although, the networks like ResNet and
EfficientNet provide higher representation ability, they
need substantially high memory and training time. But,
AlexNet offered a better balance between accuracy
and computational efficiency. Further, AlexNet captures
essential feature representations and preserving spatial
features necessary for segmentation. By adjusting the

Noise removal ‘

Input brain

image

( Brain diseases

'

Segmentation ‘

Figure 1: Architecture of the suggested brain tumor diagnosis process.
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Figure 2: Architecture of DeepLabV3+.

backbone structure, the model enhances spatial
information extraction and provides better
segmentation performance. DC in the later layers of the
backbone network helps in regulating the output
feature map’s size. The ASPP then categorizes the
output image pixels. Finally, the decoder applies

transpose  convolution for reconstructing the
segmented image and restoring it to its original
dimensions with improved accuracy.
3.2.1. Parameter Optimization

To improve the hyper-parameters of the

DeepLabV3+, the metaheuristic OOA [19] is presented.
The hyper-parameters like backbone network, learning
rate, weight decay, dropout rate, loss function and
epochs are optimized by the OOA using the fitness
function. It is expressed as:
fitness = Maximize (Dice score) (2)

The OOA mimics the hunting behaviour of ospreys
and their strategy to capture fish from the sea. In this,
an osprey initially determines the location of its prey
before quickly fall to catch it and moving it to a better
place. The mathematical modelling of the OOA models
this natural hunting behaviour by splitting the
optimization process into two key stages: exploration
and exploitation. These stages simulate how ospreys
search for prey and refine their hunting process. This
allows the optimizer to efficiently navigate and optimize
complex search spaces. The mathematical modelling
of the OOA is explained in this section:

Initialization: Every osprey presents a potential
solution by assigning values to the problem parameters
with respect to its position within the search space.

')/ ) ]
! Y Ny Pin
4
Zz,l Zz,/ J/z,”
Y= Y =l 3)
/ 2 Ze Y
}/L _ZL,I ryL./ J/M,ﬂ 1en
L dZxn
where ,=1,2,3,..,Z /£=12,3..,n. Here, ¥ is the

Osprey population, Y, is the j’” Osprey, z,; isthe yad

dimension, Z is the total Osprey and 7 is the number
of dimensions.

Exploration: The hunting stage of the fish is the
exploration and Ospreys are powerful predators with
better vision. This enables them to detect fish beneath
the water's surface. Once they locate their target, they
swiftly dive and submerge to capture their prey. This
movement improves the exploration capability, helping
it locate optimum regions and avoid local optima. In this
algorithm, osprey considers other individuals in the
population with superior objective function values as
fish submerged underwater. The group of fish position

FP, for /™ Osprey is determined by:

FR={¥11€{1,2,3,... M} G;< G, }U{Y,} (4)

where 7, is the best Osprey.

The osprey selects a target fish at random from the
identified set and attack the prey. By simulating the
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motion of the Osprey to its prey and the new position
within the search space is computed as:

i =2 +rand; (CFip =1, %2 ) (5)

]k,lowk sz]k < upy
Pl
Zjx = low,,z" jk <low, (6)

qu’Zj,k > Upy

When the updated position provides a better value,
it replaces the osprey’s prior position and it is
expressed as:

zP.GM <G;
joi J

Z;= (7)
Z s elsewhere

where Z!' is the j” Osprey’s new position, z/; is the

k™ dimension of the Osprey, G;' is the objective
value, CF;, is the chosen fish for the j” Osprey at the

k™ dimension, and I, is the random number.
Jjik

Exploitation: In this stage, the motion of the ospreys
toward a safer position introduces slight adjustments in
its location within the search space. These small
variations enhance the exploitation ability and allow for
a better local search and convergence toward optimal
solutions.

In this optimizer, the Osprey’s natural characteristic
is simulated by first generating a new random position
and safe location to consume its prey is given as:

low, +rand;  (up;, —low,
i=z+ - ( ) (8)

where s=1{1,2,3,...,5}; s is the iteration count and § is

the overall iterations.
]k,lowk = ij < upy
P2
Zjk = low,,z" Zjk { <low, 9)

P2
qu»Zj,k > Upy

where Z!? isthe j" Osprey’s new position, z/; is the
k™ dimension of the Osprey,
When the updated position provides a better value,

it replaces the osprey’s prior position and it is
expressed as:

zP 6" <G,
7. = J J J (10)

J
Z ; ,elsewhere

where G} is the objective value. Algorithm 1 shows

the Pseudocode of the OOA to update the parameters
of the DeepLabV3+.

Algorithm 1: Pseudocode of the OOA

Input: Population size, Ospreys and iterations
Output: Best Osprey ¥,

Initialize the population by Equations (5) and (6)
Evaluate the fitness by Equation (2)

For s=1to S

For k=1to M

Stage 1: Exploration

Position of the fish is
FP={Y,11€{1,2,3,..,M}r G, <G;}U{Y,}

updated by

The new position within the search space is computed
by 274 =2 +rand; (CFji =15 %2,)

Initialize the boundary condition by
]k,lowk = z]k < upy
zi}c =4low,, fk < low,
qu’Zj,k > Upy
7P G <G,
Update j”Ospreyby z,=1 7/
’ Z s elsewhere

Stage 2: Exploitation

Position of the fish is updated by
low, +rand ;  (up, —low
Zi/% —z+ k ],k( D k)
S
Initialize the boundary condition by

]k,lowk szjk < upy

P2 P2
2 =qlowy, 25k s low

P2
qu»Zj,k > Upy

P2 P2

Update j” Osprey by Z, = £i76;m <G
j

Z ; ,elsewhere

end

Save the best solution
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4. RESULTS ANALYSIS

The following section show the results analysis of
the proposed and existing model for showing the
efficiency of the suggested work.

4.1. Implementation Details

The DeepLabV3+ model, integrated with OOA for
brain tumor segmentation, is implemented using
Python software. This process is executed on a
computer running a 64-bit operating system, featuring 8
GB of RAM and Intel i5 processor. All experiments are
demonstrated by 5-fold cross-validation for ensuring
robustness. The reported outcomes represent the
average performance across folds.

4.2. Datasets

There are two datasets like brain TCIA [20] and
Figshare [21].

The brain MRI dataset consists of brain MRI scans
accompanied by manually segmented Fluid Attenuated
Inversion Recovery (FLAIR) abnormal images. The

images were gathered from The Cancer Imaging
Archive (TCIA) and have data from 110 patients. Each
patient has at least one FLAIR sequence available,
along with corresponding genomic clustered data.

The Figshare brain tumor data has 3,064 images
obtained from 233 patients. It comprises 3 kinds of
brain tumors: 708 images (meningioma), 1,426 images
(glioma), and 930 images (pituitary tumor). Figure 3
shows the sample images of the TCIA and Figshare
datasets.

4.3. Hyperparameters

Table 1 depicts the hyper-parameters of the
suggested model. The backbone network is AlexNet, a
learning rate of 0.001 and a weight decay of 0.0001 are
chosen for proving stable convergence during training.
For overcoming overfitting, a dropout rate of 0.3 is
chosen, the Dice loss function is used, and the model
is trained over 100 epochs to achieve optimal
performance. The performance of the DeeplLabV3+
model is based on fine-tuning of the several
hyperparameters. Initially, default or manually chosen

Figure 3: Sample images of the TCIA and Figshare datasets.

Table 1: Hyper-Parameters

Hyper-parameters Before Optimization (Initial Value) After OOA Optimization (Optimized Value)
Backbone Network ResNet AlexNet
Learning Rate 0.01 0.001
Weight Decay 0.0005 0.0001
Dropout Rate 0.5 0.3
Loss Function Dice Dice
Epochs 50 50
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Figure 4: Analysis of (a) Input, (b) GT, (c) FCM, (d) UNet, (e) DeepLabV3 and (f) proposed on the TCIA dataset.

values are utilized for training. Finally, the network’s
optimization weights are performed using the OOA.

4.4. Qualitative Analysis

The following section shows the qualitative analysis
on the two datasets like TCIA and Figshare. Here, the
analysis is performance is evaluated for the
approaches like FCM, UNet, DeepLabV3 and proposed
(DeepLabV3+ with OOA).

Figures 4 and 5 delineates the qualitative analysis
of input, Ground Truth (GT), FCM, UNet, DeepLabV3

(a) (b) (©)

and proposed (DeepLabV3+ with OOA) on the TCIA
and Figshare datasets. The input images, Ground
Truth (GT), and segmented outputs from all
approaches are visually analyzed for assessing their
accuracy in segmenting lesions. FCM, being a
clustering based model, generally shows over-
segmentation, the UNet and DeeplLabV3 show
improved segmentation but fails in boundary precision.
Finally, the proposed DeepLabV3+ with OOA provided
superior performance, preserved fine details and match
with the GT. This shows its effectiveness in
segmentation accuracy enhancement.

(d) (e ®
Figure 5: Analysis of (a) Input, (b) GT, (c) FCM, (d) UNet, (e) DeepLabV3 and (f) proposed on the Figshare dataset.
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4.5. Ablation Study

The following section defines the ablation study with
respect to the segmentation approaches like FCM,
UNet, DeepLabV3 and proposed (DeepLabV3+ with
OOA). Different performance measures like Accuracy,
Sensitivity, Specificity, Precision, Dice and Intersection
of Union (loU) are compared.
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Figure 6: Accuracy comparison.

Figure 6 presents the accuracy comparison of
different segmentation models like FCM, UNet,
DeepLabV3 and proposed (DeepLabV3+ with OOA).
Accuracy values attained by the FCM, UNet,
DeeplLabV3 and proposed models are 94.94%, 96%,
98.08% and 99.05% on the TCIA dataset. Similarly, an
accuracy value achieved by the FCM is 93.8%, UNet is
95.1%, DeeplLabV3 is 98.1% and proposed model is
99.14% on the Figshare dataset. By integrating the
better feature extraction and segmentation capacity of
DeepLabV3+ with the hyperparameter optimization
strength of OOA, the suggested model attained
superior performance in brain segmentation. The
integration of OOA provides optimum weight tuning,
improved boundary precision, high robustness to noise,
and better convergence.

Figure 7 presents the precision comparison of
different segmentation models like FCM, UNet,
DeepLabV3 and proposed (DeepLabV3+ with OOA). A
large precision value shows that the segmentation
model is highly efficient at accurately showing the
targeted regions without misclassifying irrelevant
structures. Precision values attained by the suggested
model are 99.12% (TCIA) and 99.09% (Figshare)
datasets respectively.

Figure 8 presents the sensitivity comparison of
different segmentation models like FCM, UNet,

DeepLabV3 and proposed (DeepLabV3+ with OOA).
Sensitivity values attained by the FCM, UNet,
DeepLabV3 and proposed models are 93.65%, 97.9%,
98.3% and 99.34% on the TCIA dataset. Then,
sensitivity value achieved by the FCM is 95.87%, UNet
is 97.7%, DeepLabV3 is 98.65% and proposed model
is 99.42% on the Figshare dataset. These results
presents that the merging of the OOA with
DeepLabV3+ is major in refining the segmentation. The
OOA assists in optimizing parameters of the model,
and enhancing the feature extraction capabilities.

Consequently, the proposed model outperformed
conventional methods like FCM, UNet, and
DeepLabV3. This demonstrates its reliability and

robustness in brain image segmentation process.
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Figure 7: Precision comparison.
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Figure 8: Sensitivity comparison.

Figure 9 presents the specificity comparison of
different segmentation models. Higher value of
specificity depicts that the model is efficiently
differentiating relevant and non-relevant areas. The
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suggested model maintained a better balance between
detecting actual segmented areas. Specificity values
attained by the suggested model are 99.59% (TCIA)
and 99.3% (Figshare) datasets respectively.
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Figure 9: Specificity comparison.
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Figure 10: Dice comparison.

Figure 10 presents the dice comparison of different
segmentation models. The high value of the dice score
shows a greater degree of similarity among the
segmented and the GT image. This analysis
showcases how all approaches perform in terms of
dice similarity. Dice values attained by the FCM, UNet,
DeepLabV3 and proposed models are 94.65%,
96.91%, 97.08% and 98.97% on the TCIA dataset.
Then, dice value achieved by the FCM is 93.3%, UNet
is 96.7%, DeepLabV3 is 97.1% and proposed model is
99.23% on the Figshare dataset.

Figure 11 presents the loU comparison of different
segmentation models. The analysis shows every
segmentation model performs with respect to the loU
and presenting their superiority in accurately finding

and segmenting lesions. Conventional models like
FCM, UNet, DeepLabV3 exhibited lower loU scores
because of their susceptibility to noise and difficulty in
preserving fine details. loU scores attained by the
suggested model are 99.59% (TCIA) and 99.3%
(Figshare) datasets respectively.
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Figure 11: loU comparison.

Table 2 presents the comparative of filtering
methods, segmentation models, backbone networks,
and optimization algorithms. NLM + Enhanced
DeepLabV3+ (AlexNet + OOA) achieves the highest
performance across all metrics, showing the
effectiveness of using NLM filtering with the Enhanced
DeepLabV3+ model and OOA optimization. It is
observed that NLM + Enhanced DeepLabV3+ (AlexNet
+ OOA) obtained the better performance across entire
measures. This proves its effectiveness in brain tumor
segmentation. Comparison with Gaussian and Median
filtering, NLM better preserves structural details while
reducing noise which lead to improved segmentation
accuracy. Further, DeepLabV3+ with AlexNet
outperformed other segmentation models like U-Net
(ResNet-50) and DeeplLabV3 with MobileNet or
InceptionNet. When comparing optimization
techniques, OOA provided superior outcomes over
Genetic algorithm (GA), particle swarm Optimization
(PSO), Arithmetic optimization algorithm (AOA) and
Salp Swarm Optimization (SSA). This highlights its
process in refining hyperparameters for optimal
segmentation. These analyses proved that combining
NLM filtering, Enhanced DeepLabV3+, AlexNet, and
OOA optimization offers a better approach for efficient
brain tumor segmentation and classification.

Table 3 illustrates the comparative analysis of
different segmentation models with respect to different
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Table 2: Comparative Analysis

Methods Dice (%) Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) loU (%)
Gaussian Filter + DeepLabV3+ 97.32 98.76 97.83 98.94 97.58 92.71
(AlexNet + GA)
NLM + DeepLabV3+ (VGG16 + 97.1 98.6 97.5 98.7 98.2 94.5
PSO)
Median Filter + DeepLabV3 98.6 97.5 98.7 97.1 98.9 95.5
(MobileNet + OOA)
NLM + U-Net (ResNet-50 + AOA) 98.7 98.1 97.3 98.5 98.8 96.1
Median Filter + DeepLabV3 98.9 98.4 97.9 98.7 99.0 97.4
(InceptionNet + SSA)
Gaussian Filter + DeepLabV3+ 98.7 98.1 98.3 99.1 98.8 97.9
(AlexNet + OOA)
NLM + Enhanced DeepLabV3+ 99.23 99.14 99.42 99.3 99.09 99.3
(AlexNet + OOA)
Table 3: Performance Comparison with Statistical Validation
Accuracy Sensitivity Specificity Precision (%) %
Method ice (%) + o) £ 0/} +
ethods Dice (%) % Cl (%) £ Cl (%) £ Cl (%) £ Cl ci loU (%) = €l
FCM 94.65 + 0.42 94.94 + 0.38 93.65 * 0.51 9512 + 0.47 94.72 + 0.44 90.21 * 0.39
UNet 96.91 £ 0.35 96.00 *+ 0.33 97.90 * 0.40 97.25 + 0.41 97.01 *= 0.38 92.10 *= 0.37
DeeplLabV3 97.08 + 0.28 98.08 + 0.29 98.30 = 0.31 98.40 * 0.32 98.15 + 0.28 95.30 * 0.30
Proposed
(DeepLabV3+ + OOA, 98.97 +0.25 99.05 * 0.22 99.34 + 0.27 99.59 =+ 0.21 99.12 + 0.23 99.59 *+ 0.24
TCIA)
Proposed
(DeepLabV3+ + OOA, 99.23 + 0.21 99.14 *0.20 99.42 = 0.24 99.30 * 0.22 99.09 *+ 0.21 99.30 * 0.22
Figshare)

measures. Each value is reported as mean + 95%
confidence interval, averaged over 5-fold cross-
validation. The outcomes proved that the proposed
method achieved the highest performance across all
evaluation measures, with Dice scores of 98.97%
(TCIA) and 99.23% (Figshare). Table 4 compares the
training time per epoch and memory usage of different
models. The proposed DeepLabV3+ with OOA
achieved the best trade-off and required only 21.2
seconds per epoch and 2.1 GB of memory. Thus, the
proposed method is more accurate and
computationally efficient.

Table 4: Comparison of Computational Cost

4.6. Comparison with Recent Works

Table 5 shows the comparative analysis with
different works like [12-18] with the proposed model. It
is noted from the analysis that the suggested model
outperformed all the approaches due to the integration
of DeepLabV3+ and OOA. Thus, it is proved that the
suggested approach can be utilized for brain tumor

diagnosis. The comparison of brain  tumor
segmentation techniques highlights three main
approaches: handcrafted features, CNN-based

methods, and hybrid approaches. Handcrafted feature
methods benefit from domain knowledge and are

Models Training Time / Epoch (s) Memory Usage (GB)
FCM 25.1 35
UNet 110.6 4.2
DeepLabV3 150.3 438
Proposed (DeepLabV3+ + OOA) 21.2 21
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Table 5: Comparison with Recent Works

References Dice (%) Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) loU (%)
[12] 95 - - - - -
[13] 91.87 - 92.29 99 - 84.96
[14] 91 - 93 - 96 84
[15] 81.42 99.12 80 98 - -
[16] - 98.9 - - -
[17] - 96 - 96 -
[18] - 98.6 - - -
Proposed (TCIA) 98.97 99.05 99.34 99.59 99.12 99.59
Proposed 99.23 99.14 99.42 99.3 99.09 99.3
(Figshare dataset)

compatible with traditional machine learning algorithms.
However, they are sensitive to intensity variations and
require manual tuning, which can limit scalability and
performance. CNN-based methods offer automatic
feature learning, robustness to intensity changes, and
deliver high precision and accuracy. Despite these
strengths, they are computationally expensive, depend
on large annotated datasets, and may lack
interpretability. Hybrid approaches aim to combine the
advantages of both handcrafted and CNN-based
techniques, leading to improved performance and
potentially greater interpretability.

5. DISCUSSION

The proposed DeeplLabV3+ integrated with the
OOA shown Dbetter segmentation performance
compared to methods FCM, UNet, and baseline
DeepLabV3. Instead of focusing only on the
quantitative improvements, the significance of these
outcomes is based on their potential clinical impact. By
achieving more precise boundary representation and
more robust to noise, the method could provide
radiologists with more reliable tumor localization.
Further, it supports decision-making, reduces
diagnostic errors, and improves treatment planning.
Moreover, the near-real-time execution of the model
suggests the feasibility of deployment in hospital
workflows, where automated assistance could improve
MRI analysis and overcomes workload of the
radiologists.

Although, promising results has been achieved by
the suggested model, certain limitations must be
acknowledged. First, the present work is on the basis

of the 2D MRI slices, which may not entirely capture
volumetric tumor characteristics. The suggested model
will be extended to 3D volumetric segmentation would
provide more comprehensive spatial information for
diagnosis. Second, even though the model performed
well on TCIA and Figshare datasets, the dataset sizes
remain relatively modest for requirements of the DL
model. This raise problem about the generalizability of
the model to larger and more diverse clinical
populations. Third, the absence of external clinical
validation restricts the direct applicability of the model
in real-time hospital settings. Addressing these
limitations through multimodal MRI integration, larger-
scale datasets, and external validation studies will be
major stages to clinical translation.

6. CONCLUSION

This work presented an enhanced model to
segment and classifies the brain tumors using the
DeepLabV3+ with OOA model. in the DeeplLabV3+
model, the AlexNet was considered as the backbone.
The integration of this approach has significantly
enhanced the brain tumor segmentation performance
by optimizing model parameters and enhancing feature
extraction. The OOA further optimized the
hyperparameters of the DeepLabV3+ and ensured
better segmentation performance. Comparison of the
suggested model with existing models like FCM, UNet,
and DeeplLabV3, provided that the proposed method
obtained superior performance with respect to different
measures on two datasets. As a result, the suggested
model achieved better segmentation and suitable for
real-time analysis. The present segmentation is
performed on 2D MRI slices. Future work will focus on
extending the suggested model to multimodal MRI for
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capturing complementary information across imaging
modalities, investigating more diverse clinical datasets.
This provides robustness, generalizability, and
investigating real-time deployment in clinical workflows
for supporting radiologists in practice. Moreover,
expanding the method toward 3D volumetric
segmentation and explainable Al techniques will further
improve clinical relevance and interpretability.
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