MiR-708-5p as a Predictive Marker of Colorectal Cancer Prognosis
DOI:
https://doi.org/10.6000/1927-7229.2016.05.01.2Keywords:
microRNA, colorectal tumor, DLD1, HT-29, cell lines.Abstract
Background: MicroRNAs (miRNA) are short non-coding RNA that act as negative regulators of gene expression. Altered levels of miR-708-5p have recently been described in many tumors, although its contribution in colorectal cancer (CRC) pathophysiology remains unclear.
Methods/Patients: Quantitative real-time polymerase chain reaction was employed to evaluate the expression of miR-708-5p in 50 CRC and 20 paired adjacent noncancerous tissues. The relationship between miRNA levels and clinicopathological features was estimated using the Mann-Whitney test, and survival curves calculated by the Kaplan-Meier method. Additionally, in vitro assays were performed to investigate the possible role of miR-708-5p on CRC cell survival.
Results: The expression level of miR-708-5p was significantly decreased in CRC tissues (3.79 fold-change, p=0.0112) when compared with non-neoplastic colon samples. Paired analysis in 20 CRC samples with their corresponding adjacent non-neoplastic tissue showed miR-708 downregulation in 60% of them. The same pattern was seen in DLD1 and HT-29 cell lines (~50-fold decrease). Interestingly, higher expression is observed in patients with poor prognosissuch as stage III/IV, relapse/metastasis and death, and shorter 5-year event free survival. Exogenous expression of miR-708 exerted a significant influence on clonogenicity in vitro.
Conclusion: These results suggest that reduced miR-708-5p expression may contribute to the first stages of colorectal carcinogenesis. A shift in the regulation of miR-708-5p might operate in more severe stages of the disease. It seems that lower levels of miR-708 expression might connote less advanced disease and better prognosis. Further studies are needed to corroborate our results and better elucidate the role of miR-708 in CRC.
References
Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal cancer. CA Cancer J Clin 2009; 59: 366-78. http://dx.doi.org/10.3322/caac.20038
Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127(12): 2893-917. http://dx.doi.org/10.1002/ijc.25516
Yeoh KG1, Ho KY, Chiu HM, Zhu F, Ching JY, Wu DC, Matsuda T, Byeon JS, Lee SK, Goh KL, Sollano J, Rerknimitr R, Leong R, Tsoi K, Lin JT, Sung JJ. Asia-Pacific Working Group on Colorectal Cancer. The Asian Pacific colorectal Screening score: A validated tool that stratifies risk for colorectal advanced neoplasia in asymptomatic Asian subjects. Gut 2011; 60: 1236-41. http://dx.doi.org/10.1136/gut.2010.221168
Weeks JC, Catalano PJ, Cronin A, Finkelman MD, Mack JW, Keating NL, Schrag D. Patients’ expectations about effects of chemotherapy for advanced cancer. N Engl J Med 2012; 367: 1616-25. http://dx.doi.org/10.1056/NEJMoa1204410
Bartels CL, Tsongalis GJ. MicroRNAs: novel biomarkers for human cancer. Clin Chem 2009; 55(4): 623-31. http://dx.doi.org/10.1373/clinchem.2008.112805
Cao P, Zhou L, Zhang J, Zheng F, Wang H, Ma D, Tian J. Comprehensive expression profiling of microRNAs in laryngeal squamous cell carcinoma. Head Neck 2013; 35(5): 720-8. http://dx.doi.org/10.1002/hed.23011
Oliveira JC, Scrideli CA, Brassesco MS, Morales AG, Pezuk JA, Queiroz R de P, Yunes JA, Brandalise SR, Tone LG. Differential MiRNA expression in childhood acute lymphoblastic leukemia and association with clinical and biological features. Leuk Res 2011; 36: 293-8. http://dx.doi.org/10.1016/j.leukres.2011.10.005
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834-8. http://dx.doi.org/10.1038/nature03702
Nana-Sinkam SP, Croce CM. MicroRNAs as therapeutic targets in cancer. Transl Res 2011; 157: 216-25. http://dx.doi.org/10.1016/j.trsl.2011.01.013
Guo P, Lan J, Ge J, Nie Q, Mao Q, Qiu Y. MiR-708 acts as a tumor suppressor in human glioblastoma cells. Oncol Rep 2013; 30(2): 870-6.
Jang JS, Jeon HS, Sun Z, Aubry MC, Tang H, Park CH, Rakhshan F, Schultz DA, Kolbert CP, Lupu R, Park JY, Harris CC, Yang P, Jen J. Increased miR-708 expression in NSCLC and its association with poor survival in lung adenocarcinoma from never smokers. Clin Cancer Res 2012; 18(13): 3658-67. http://dx.doi.org/10.1158/1078-0432.CCR-11-2857
Li X, Li D, Zhuang Y, Shi Q, Wei W, Ju X. Overexpression of miR-708 and its targets in the childhood common precursor B-cell ALL. Pediatr Blood Cancer 2013; 60(12): 2060-7. http://dx.doi.org/10.1002/pbc.24583
Liu C, Iqbal J, Teruya-Feldstein J, Shen Y, Dabrowska MJ, Dybkaer K, Lim MS, Piva R, Barreca A, Pellegrino E, Spaccarotella E, Lachel CM, Kucuk C, Jiang CS, Hu X, Bhagvati S, Greiner TC, Weisenburger DD, Aoun P, Perkins SL, McKeithan TW, Inghirami G, Chan WC. MicroRNA expression profiling identifies molecular signatures associated with anaplastic large cell lymphoma. Blood 2013; 122(12): 2083-92. http://dx.doi.org/10.1182/blood-2012-08-447375
Patnaik SK, Kannisto E, Knudsen S, Yendamuri S. Evaluation of microRNA expression profiles that may predict recurrence of localized stage I non-small cell lung cancer after surgical resection. Cancer Res 2010; 70(1): 36-45. http://dx.doi.org/10.1158/0008-5472.CAN-09-3153
Song T, Zhang X, Zhang L, Dong J, Cai W, Gao J, Hong B. MiR-708 promotes the development of bladder carcinoma via direct repression of Caspase-2. J Cancer Res Clin Oncol 2013; 139(7): 1189-98. http://dx.doi.org/10.1007/s00432-013-1392-6
Saini S, Yamamura S, Majid S, Shahryari V, Hirata H, Tanaka Y, Dahiya R. MicroRNA-708 induces apoptosis and suppresses tumorigenicity in renal cancer cells. Cancer Res 2011; 71(19): 6208-19. http://dx.doi.org/10.1158/0008-5472.CAN-11-0073
Saini S, Majid S, Shahryari V, Arora S, Yamamura S, Chang I, Zaman MS, Deng G, Tanaka Y, Dahiya R. MiRNA-708 control of CD44(+) prostate cancer-initiating cells. Cancer Res 2012; 72(14): 3618-30. http://dx.doi.org/10.1158/0008-5472.CAN-12-0540
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402-8. http://dx.doi.org/10.1006/meth.2001.1262
Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc 2006; 1(5): 2315-9. http://dx.doi.org/10.1038/nprot.2006.339
Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103(7): 2257-61. http://dx.doi.org/10.1073/pnas.0510565103
Riester A, Issler O, Spyroglou A, Rodrig SH, Chen A, Beuschlein F. ACTH-dependent regulation of microRNA as endogenous modulators of glucocorticoid receptor expression in the adrenal gland. Endocrinology 2012; 153(1): 212-22. http://dx.doi.org/10.1210/en.2011-1285
Patterson EE, Holloway AK, Weng J, Fojo T, Kebebew E. MicroRNA profiling of adrenocortical tumors reveals miR-483 as a marker of malignancy. Cancer 2011; 117(8): 1630-9. http://dx.doi.org/10.1002/cncr.25724
Lou X, Qi X, Zhang Y, Long H, Yang J. Decreased expression of microRNA-625 is associated with tumor metastasis and poor prognosis in patients with colorectal cancer. J Surg Oncol 2013; 108(4): 230-5. http://dx.doi.org/10.1002/jso.23380
Diaz R, Silva J, García JM, Lorenzo Y, García V, Peña C, Rodríguez R, Muñoz C, García F, Bonilla F, Domínguez G. Deregulated expression of miR-106a predicts survival in human colon cancer patients. Genes Chromosomes Cancer 2008; 47: 794-802. http://dx.doi.org/10.1002/gcc.20580
Lei SL, Zhao H, Yao HL1, Chen Y, Lei ZD1, Liu KJ, Yang Q. Regulatory roles of microRNA-708 and microRNA-31 in proliferation, apoptosis and invasion of colorectal cancer cells. Oncol Lett 2014; 8(4): 1768-1774. http://dx.doi.org/10.3892/ol.2014.2328
Piepoli A, Tavano F, Copetti M, Mazza T, Palumbo O, Panza A, di Mola FF, Pazienza V, Mazzoccoli G, Biscaglia G, Gentile A, Mastrodonato N, Carella M, Pellegrini F, di Sebastiano P, Andriulli A. Mirna expression profiles identify drivers in colorectal and pancreatic cancers. PLoS One 2012; 7(3): e33663. http://dx.doi.org/10.1371/journal.pone.0033663
Schotte D, Chau JC, Sylvester G, Liu G, Chen C, van der Velden VH, Broekhuis MJ, Peters TC, Pieters R, den Boer ML. Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 2009; 23(2): 313-22. http://dx.doi.org/10.1038/leu.2008.286
Cascio S1, Finn OJ. Complex of MUC1, CIN85 and Cbl in Colon Cancer Progression and Metastasis. Cancers (Basel) 2015; 7(1): 342-52. http://dx.doi.org/10.3390/cancers7010342
Yao S, Zheng P, Wu H, Song LM, Ying XF, Xing C, Li Y, Xiao ZQ, Zhou XN, Shen T, Chen L, Liu YH, Lai MD, Mei L, Gao TM, Li JM. Erbin interacts with c-Cbl and promotes tumourigenesis and tumour growth in colorectal cancer by preventing c-Cbl-mediated ubiquitination and down-regulation of EGFR. J Pathol 2015; 236(1): 65-77. http://dx.doi.org/10.1002/path.4502
Martín MJ, Calvo N, de Boland AR, Gentili C. Molecular mechanisms associated with PTHrP-induced proliferation of colon cancer cells. J Cell Biochem 2014; 115(12): 2133-45. http://dx.doi.org/10.1002/jcb.24890
Mu Y, Chen Y, Zhang G, Zhan X, Li Y, Liu T, Li G, Li M, Xiao Z, Gong X, Chen Z. Identification of stromal differentially expressed proteins in the colon carcinoma by quantitative proteomics. Electrophoresis 2013; 34(11): 1679-92. http://dx.doi.org/10.1002/elps.201200596
Khaleghpour K, Li Y, Banville D, Yu Z, Shen SH. Involvement of the PI 3-kinase signaling pathway in progression of colon adenocarcinoma. Carcinogenesis 2004; 25(2): 241-8. http://dx.doi.org/10.1093/carcin/bgg195
Ericson K, Gan C, Cheong I, Rago C, Samuels Y, Velculescu VE, Kinzler KW, Huso DL, Vogelstein B, Papadopoulos N. Genetic inactivation of AKT1, AKT2, and PDPK1 in human colorectal cancer cells clarifies their roles in tumor growth regulation. Proc Natl Acad Sci U S A. 2010; 107(6): 2598-603. http://dx.doi.org/10.1073/pnas.0914018107
Kawazoe A, Shitara K, Fukuoka S, Kuboki Y, Bando H, Okamoto W, Kojima T, Fuse N, Yamanaka T, Doi T, Ohtsu A, Yoshino T. A retrospective observational study of clinicopathological features of KRAS, NRAS, BRAF and PIK3CA mutations in Japanese patients with metastatic colorectal cancer. BMC Cancer 2015; 15: 258-66. http://dx.doi.org/10.1186/s12885-015-1276-z
Lan YT, Jen-Kou L, Lin CH, Yang SH, Lin CC, Wang HS, Chen WS, Lin TC, Jiang JK, Chang SC. Mutations in the RAS and PI3K pathways are associated with metastatic location in colorectal cancers. J Surg Oncol 2015; 111(7): 905-10. http://dx.doi.org/10.1002/jso.23895
Castellano E, Downward J. RAS Interaction with PI3K: More Than Just Another Effector Pathway. Genes Cancer 2011; 2(3): 261-74. http://dx.doi.org/10.1177/1947601911408079
Jacobsen A, Silber J, Harinath G, Huse JT, Schultz N, Sander C. Analysis of microRNA-target interactions across diverse cancer types. Nat Struct Mol Biol 2013; 20(11): 1325-32. http://dx.doi.org/10.1038/nsmb.2678
Han BW, Feng DD, Li ZG, Luo XQ, Zhang H, Li XJ, Zhang XJ, Zheng LL, Zeng CW, Lin KY, Zhang P, Xu L, Chen YQ. A set of miRNAs that involve in the pathways of drug resistance and leukemic stem-cell differentiation is associated with the risk of relapse and glucocorticoid response in childhood ALL. Hum Mol Genet 2011; 20(24): 4903-15. http://dx.doi.org/10.1093/hmg/ddr428
Pizzini S, Bisognin A, Mandruzzato S, Biasiolo M, Facciolli A, Perilli L, Rossi E, Esposito G, Rugge M, Pilati P, Mocellin S, Nitti D, Bortoluzzi S, Zanovello P. Impact of microRNAs on regulatory networks and pathways in human colorectal carcinogenesis and development of metastasis. BMC Genomics 2013; 14: 589-602. http://dx.doi.org/10.1186/1471-2164-14-589