A Yeast Mutant Screen Identifies TORC and Lys63 Polyubiquitination Pathway Genes among Determinants of Sensitivity to the Cancer Stem Cell-Specific Drug Salinomycin

Authors

  • Donald Rozario Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, USA
  • Sammer Zeglam Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, USA
  • Wolfram Siede Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, USA

DOI:

https://doi.org/10.30683/1927-7229.2020.09.05

Keywords:

Salinomycin, cancer stem cells, mitochondria, oxidative stress, TORC pathway, polyubiquitination.

Abstract

The antibiotic salinomycin (SM) acts as a selective potassium ionophore. In budding yeast (Saccharomyces cerevisiae), we describe that the agent inhibits cell growth, elevates reactive oxygen species (ROS) levels and prominently causes mitochondrial damage, as revealed by the emergence of perpetually respiration-defective cells. The collection of systematic gene deletions in haploid yeast was screened to characterize genes whose deletion confers SM sensitivity or resistance if glycerol is provided as the only carbon source, thus requiring active respiration for growth. Mutants conferring the highest SM resistance were those of the Mms2-Ubi13 E2-ubiquitin conjugating enzyme (Lys63 polyubiquitination) and the TORC pathway, such as Sch9. Sch9 phosphorylation is reduced after SM treatment and, whereas initial SM-enhanced ROS levels are not diminished in the mutant, we suggest that a protective response is mounted in the absence of Sch9 that promotes mitochondrial stability under conditions of potassium ion loss. As indicated by other isolated mutants with altered SM sensitivity, levels and modifications of ribosomal proteins may also play a role in these responses. SM has attracted considerable attention due to its cancer stem-cell specific mode of action. Even if not all of its cancer stem cell targets may have an equivalent in yeast, these studies may suggest strategies for mitigating its side effects during treatment of cancer patients.

References

Dalerba P, Cho RW, Clarke MF. Cancer stem cells: models and concepts. Annu Rev Med 2007; 58267-284. https://doi.org/10.1146/annurev.med.58.062105.204854 DOI: https://doi.org/10.1146/annurev.med.58.062105.204854

Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414(6859): 105-111. https://doi.org/10.1038/35102167 DOI: https://doi.org/10.1038/35102167

Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009; 138(4): 645-659. https://doi.org/10.1016/j.cell.2009.06.034 DOI: https://doi.org/10.1016/j.cell.2009.06.034

Dewangan J, Srivastava S, Rath SK. Salinomycin: A new paradigm in cancer therapy. Tumour Biol 2017; 39(3): 1-12. https://doi.org/10.1177/1010428317695035 DOI: https://doi.org/10.1177/1010428317695035

Naujokat C, Steinhart R. Salinomycin as a drug for targeting human cancer stem cells. J Biomed Biotechnol 2012; 950658. https://doi.org/10.1155/2012/950658 DOI: https://doi.org/10.1155/2012/950658

Kaushik V, Yakisich JS, Kumar A, Azad N, Iyer AKV. Ionophores: Potential Use as Anticancer Drugs and Chemosensitizers. Cancers (Basel) 2018; 10(10): 360. https://doi.org/10.3390/cancers10100360 DOI: https://doi.org/10.3390/cancers10100360

Holliman A, Howie F, Payne J, Scholes S. Salinomycin toxicity in dairy calves. Vet Rec 2011; 169(21): 561. https://doi.org/10.1136/vr.d7423 DOI: https://doi.org/10.1136/vr.d7423

Fuchs D, Heinold A, Opelz G, Daniel V, Naujokat C. Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells. Biochem Biophys Res Commun 2009; 390(3): 743-749. https://doi.org/10.1016/j.bbrc.2009.10.042 DOI: https://doi.org/10.1016/j.bbrc.2009.10.042

Fuchs D, Daniel V, Sadeghi M, Opelz G, Naujokat C. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells. Biochem Biophys Res Commun 2010; 394(4): 1098-1104. https://doi.org/10.1016/j.bbrc.2010.03.138 DOI: https://doi.org/10.1016/j.bbrc.2010.03.138

Riccioni R, Dupuis ML, Bernabei M, Petrucci E, Pasquini L, Mariani G, et al. The cancer stem cell selective inhibitor salinomycin is a p-glycoprotein inhibitor. Blood Cells Mol Dis 2010; 45(1): 86-92. https://doi.org/10.1016/j.bcmd.2010.03.008 DOI: https://doi.org/10.1016/j.bcmd.2010.03.008

Lagas JS, Sparidans RW, van Waterschoot RA, Wagenaar E, Beijnen JH, Schinkel AH. P-glycoprotein limits oral availability, brain penetration, and toxicity of an anionic drug, the antibiotic salinomycin. Antimicrob Agents Chemother 2008; 52(3): 1034-1039. https://doi.org/10.1128/AAC.01041-07 DOI: https://doi.org/10.1128/AAC.01041-07

Mabel C, Ake S, Ruth TD, Sebastian YJ. Are all glioma cells cancer stem cells? J Cancer Sci Ther 2010; 2(4): 100-106. https://www.hilarispublisher.com/open-access/are-all-glioma-cells-cancer-stem-cells-1948-5956.1000032.pdf DOI: https://doi.org/10.4172/1948-5956.1000032

Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature 2010; 468(7325): 829-833. https://doi.org/10.1038/nature09624 DOI: https://doi.org/10.1038/nature09624

Chen T, Yi L, Li F, Hu R, Hu S, Yin Y, et al. Salinomycin inhibits the tumor growth of glioma stem cells by selectively suppressing glioma-initiating cells. Mol Med Rep 2015; 11(4): 2407-2412. https://doi.org/10.3892/mmr.2014.3027 DOI: https://doi.org/10.3892/mmr.2014.3027

Magrath JW, Kim Y. Salinomycin's potential to eliminate glioblastoma stem cells and treat glioblastoma multiforme (Review). Int J Oncol 2017; 51(3): 753-759. https://doi.org/10.3892/ijo.2017.4082 DOI: https://doi.org/10.3892/ijo.2017.4082

Matsumori N, Morooka A, Murata M. Conformation and location of membrane-bound salinomycin-sodium complex deduced from NMR in isotropic bicelles. J Am Chem Soc 2007; 129(48): 14989-14995. https://doi.org/10.1021/ja075024l DOI: https://doi.org/10.1021/ja075024l

Mitani M, Yamanishi T, Miyazaki Y. Salinomycin: a new monovalent cation ionophore. Biochem Biophys Res Commun 1975; 66(4): 1231-1236. https://doi.org/0006-291x(75)90490-8 DOI: https://doi.org/10.1016/0006-291X(75)90490-8

Mitani M, Yamanishi T, Miyazaki Y, Otake N. Salinomycin effects on mitochondrial ion translocation and respiration. Antimicrob Agents Chemother 1976; 9(4): 655-660. https://doi.org/10.1128/aac.9.4.655 DOI: https://doi.org/10.1128/AAC.9.4.655

Bortner CD, Hughes FM, Jr., Cidlowski JA. A primary role for K+ and Na+ efflux in the activation of apoptosis. J Biol Chem 1997; 272(51): 32436-32442. https://doi.org/10.1074/jbc.272.51.32436 DOI: https://doi.org/10.1074/jbc.272.51.32436

Kim KY, Yu SN, Lee SY, Chun SS, Choi YL, Park YM, et al. Salinomycin-induced apoptosis of human prostate cancer cells due to accumulated reactive oxygen species and mitochondrial membrane depolarization. Biochem Biophys Res Commun 2011; 413(1): 80-86. https://doi.org/10.1016/j.bbrc.2011.08.054 DOI: https://doi.org/10.1016/j.bbrc.2011.08.054

Verdoodt B, Vogt M, Schmitz I, Liffers ST, Tannapfel A, Mirmohammadsadegh A. Salinomycin induces autophagy in colon and breast cancer cells with concomitant generation of reactive oxygen species. PLoS One 2012; 7(9): e44132. https://doi.org/10.1371/journal.pone.0044132 DOI: https://doi.org/10.1371/journal.pone.0044132

Xipell E, Gonzalez-Huarriz M, Martinez de Irujo JJ, Garcia-Garzon A, Lang FF, Jiang H, et al. Salinomycin induced ROS results in abortive autophagy and leads to regulated necrosis in glioblastoma. Oncotarget 2016; 7(21): 30626-30641. https://doi.org/10.18632/oncotarget.8905 DOI: https://doi.org/10.18632/oncotarget.8905

Kim KY, Park KI, Kim SH, Yu SN, Lee D, Kim YW, et al. Salinomycin induces reactive oxygen species and apoptosis in aggressive breast cancer cells as mediated with regulation of autophagy. Anticancer Res 2017; 37(4): 1747-1758. https://doi.org/10.21873/anticanres.11507 DOI: https://doi.org/10.21873/anticanres.11507

Lu D, Choi MY, Yu J, Castro JE, Kipps TJ, Carson DA. Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells. Proc Natl Acad Sci U S A 2011; 108(32): 13253-13257. https://doi.org/10.1073/pnas.1110431108 DOI: https://doi.org/10.1073/pnas.1110431108

Klose J, Eissele J, Volz C, Schmitt S, Ritter A, Ying S, et al. Salinomycin inhibits metastatic colorectal cancer growth and interferes with Wnt/beta-catenin signaling in CD133(+) hu-man colorectal cancer cells. BMC Cancer 2016; 16(1): 896. https://doi.org/10.1186/s12885-016-2879-8 DOI: https://doi.org/10.1186/s12885-016-2879-8

Li R, Dong T, Hu C, Lu J, Dai J, Liu P. Salinomycin repressed the epithelial-mesenchymal transition of epithelial ovarian cancer cells via downregulating Wnt/beta-catenin pathway. Onco Targets Ther 2017; 101317-1325. https://doi.org/10.2147/OTT.S126463 DOI: https://doi.org/10.2147/OTT.S126463

Lu W, Li Y. Salinomycin suppresses LRP6 expression and inhibits both Wnt/beta-catenin and mTORC1 signaling in breast and prostate cancer cells. J Cell Biochem 2014; 115(10): 1799-1807. https://doi.org/10.1002/jcb.24850 DOI: https://doi.org/10.1002/jcb.24850

Fu YZ, Yan YY, He M, Xiao QH, Yao WF, Zhao L, et al. Salinomycin induces selective cytotoxicity to MCF-7 mammosphere cells through targeting the Hedgehog signaling pathway. Oncol Rep 2016; 35(2): 912-922. https://doi.org/10.3892/or.2015.4434 DOI: https://doi.org/10.3892/or.2015.4434

Zhang GN, Liang Y, Zhou LJ, Chen SP, Chen G, Zhang TP, et al. Combination of salinomycin and gemcitabine eliminates pancreatic cancer cells. Cancer Lett 2011; 313(2): 137-144. https://doi.org/10.1016/j.canlet.2011.05.030 DOI: https://doi.org/10.1016/j.canlet.2011.05.030

Hermawan A, Wagner E, Roidl A. Consecutive salinomycin treatment reduces doxorubicin resistance of breast tumor cells by diminishing drug efflux pump expression and activity. Oncol Rep 2016; 35(3): 1732-1740. https://doi.org/10.3892/or.2015.4509 DOI: https://doi.org/10.3892/or.2015.4509

Dos Santos SC, Teixeira MC, Cabrito TR, Sa-Correia I. Yeast toxicogenomics: genome-wide responses to chemical stresses with impact in environmental health, pharmacology, and biotechnology. Frontiers in Genetics 2012; 363. https://doi.org/10.3389/fgene.2012.00063 DOI: https://doi.org/10.3389/fgene.2012.00063

Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, et al. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 2007; 26(5): 663-674. https://doi.org/10.1016/j.molcel.2007.04.020 DOI: https://doi.org/10.1016/j.molcel.2007.04.020

Kucejova B, Kucej M, Petrezselyova S, Abelovska L, Tomaska L. A screen for nigericin-resistant yeast mutants revealed genes controlling mitochondrial volume and mitochondrial cation homeostasis. Genetics 2005; 171(2): 517-526. https://doi.org/10.1534/genetics.105.046540 DOI: https://doi.org/10.1534/genetics.105.046540

Kim E, Siede W. The available SRL3 deletion strain of Saccharomyces cerevisiae contains a truncation of DNA damage tolerance protein Mms2: Implications for Srl3 and Mms2 functions. Internet J Microbiol 2010; 8(1): 153-175. https://ispub.com/IJMB/8/1/4095 DOI: https://doi.org/10.5580/42c

Chatterjee B, Siede W. Replicating damaged DNA in eukaryotes. Cold Spring Harb Perspect Biol 2013; 5a019836. https://doi.org/10.1101/cshperspect.a019836 DOI: https://doi.org/10.1101/cshperspect.a019836

Kawai S, Urban J, Piccolis M, Panchaud N, De Virgilio C, Loewith R. Mitochondrial genomic dysfunction causes dephosphorylation of Sch9 in the yeast Saccharomyces cerevisiae. Eukaryot Cell 2011; 10(10): 1367-1369. https://doi.org/10.1128/EC.05157-11 DOI: https://doi.org/10.1128/EC.05157-11

Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 2002; 10(3): 457-468. https://doi.org/10.1016/s1097-2765(02)00636-6 DOI: https://doi.org/10.1016/S1097-2765(02)00636-6

Huber A, Bodenmiller B, Uotila A, Stahl M, Wanka S, Gerrits B, et al. Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev 2009; 23(16): 1929-1943. https://doi.org/10.1101/gad.532109 DOI: https://doi.org/10.1101/gad.532109

Huber A, French SL, Tekotte H, Yerlikaya S, Stahl M, Perepelkina MP, et al. Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone deacetylase complex RPD3L. EMBO J 2011; 30(15): 3052-3064. https://doi.org/10.1038/emboj.2011.221 DOI: https://doi.org/10.1038/emboj.2011.221

Yu SP. Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol 2003; 70(4): 363-386. https://doi.org/10.1016/s0301-0082(03)00090-x DOI: https://doi.org/10.1016/S0301-0082(03)00090-X

Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 2004; 287(4): C817-833. https://doi.org/10.1152/ajpcell.00139.2004 DOI: https://doi.org/10.1152/ajpcell.00139.2004

Gustavsson M, Barmark G, Larsson J, Muren E, Ronne H. Functional genomics of monensin sensitivity in yeast: implications for post-Golgi traffic and vacuolar H+-ATPase function. Mol Genet Genomics 2008; 280(3): 233-248. https://doi.org/10.1007/s00438-008-0359-9 DOI: https://doi.org/10.1007/s00438-008-0359-9

Ruckenstuhl C, Buttner S, Carmona-Gutierrez D, Eisenberg T, Kroemer G, Sigrist SJ, et al. The Warburg effect suppresses oxidative stress induced apoptosis in a yeast model for cancer. PLoS One 2009; 4(2): e4592. https://doi.org/10.1371/journal.pone.0004592 DOI: https://doi.org/10.1371/journal.pone.0004592

Galan JM, Haguenauer-Tsapis R. Ubiquitin lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J 1997; 16(19): 5847-5854. https://doi.org/10.1093/emboj/16.19.5847 DOI: https://doi.org/10.1093/emboj/16.19.5847

Vu C, Fruman DA. Target of rapamycin signaling in leukemia and lymphoma. Clin Cancer Res 2010; 16(22): 5374-5380. https://doi.org/10.1158/1078-0432.CCR-10-0480 DOI: https://doi.org/10.1158/1078-0432.CCR-10-0480

Shor B, Gibbons JJ, Abraham RT, Yu K. Targeting mTOR globally in cancer: thinking beyond rapamycin. Cell Cycle 2009; 8(23): 3831-3837. https://doi.org/10.4161/cc.8.23.10070 DOI: https://doi.org/10.4161/cc.8.23.10070

Russell RC, Fang C, Guan KL. An emerging role for TOR signaling in mammalian tissue and stem cell physiology. Development 2011; 138(16): 3343-3356. https://doi.org/10.1242/dev.058230 DOI: https://doi.org/10.1242/dev.058230

Bonawitz ND, Chatenay-Lapointe M, Pan Y, Shadel GS. Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab 2007; 5(4): 265-277. https://doi.org/10.1016/j.cmet.2007.02.0009 DOI: https://doi.org/10.1016/j.cmet.2007.02.009

Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021; 49(D1): D605-D612. https://doi.org/10.1093/nar/gkaa1074 DOI: https://doi.org/10.1093/nar/gkaa1074

McIntosh KB, Warner JR. Yeast ribosomes: variety is the spice of life. Cell 2007; 131(3): 450-451. https://doi.org/10.1016/j.cell.2007.10.028 DOI: https://doi.org/10.1016/j.cell.2007.10.028

Baudin-Baillieu A, Tollervey D, Cullin C, Lacroute F. Functional analysis of Rrp7p, an essential yeast protein involved in pre-rRNA processing and ribosome assembly. Mol Cell Biol 1997; 17(9): 5023-5032. https://doi.org/10.1128/mcb.17.9.5023 DOI: https://doi.org/10.1128/MCB.17.9.5023

Komili S, Farny NG, Roth FP, Silver PA. Functional specificity among ribosomal proteins regulates gene expression. Cell 2007; 131(3): 557-571. https://doi.org/10.1016/j.cell.2007.08.037 DOI: https://doi.org/10.1016/j.cell.2007.08.037

Jiang J, Li H, Qaed E, Zhang J, Song Y, Wu R, et al. Salinomycin, as an autophagy modulator-- a new avenue to anticancer: a review. J Exp Clin Cancer Res 2018; 37(1): 26. https://doi.org/10.1186/s13046-018-0680-z DOI: https://doi.org/10.1186/s13046-018-0680-z

Versini A, Colombeau L, Hienzsch A, Gaillet C, Retailleau P, Debieu S, et al. Salinomycin Derivatives Kill Breast Cancer Stem Cells by Lysosomal Iron Targeting. Chemistry 2020; 26(33): 7416-7424. https://doi.org/10.1002/chem.202000335 DOI: https://doi.org/10.1002/chem.202000335

Downloads

Published

2021-02-02

How to Cite

Donald Rozario, Sammer Zeglam, & Wolfram Siede. (2021). A Yeast Mutant Screen Identifies TORC and Lys63 Polyubiquitination Pathway Genes among Determinants of Sensitivity to the Cancer Stem Cell-Specific Drug Salinomycin. Journal of Analytical Oncology, 9, 33–45. https://doi.org/10.30683/1927-7229.2020.09.05

Issue

Section

Articles