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Abstract: The traditional classification of studies as descriptive and analytical has proven insufficient to capture the 
complexity of modern biomedical research, including oncology. This article proposes classification based on scientific 
tasks that distinguish three main categories: descriptive, predictive, and explanatory. The descriptive scientific task 
seeks to characterize patterns, distributions, and trends in health, serving as a foundation for highlighting disparities and 
inequities. The predictive scientific task focuses on anticipating future outcomes or identifying conditions, distinguishing 
between diagnostic (current) and prognostic (future) predictions, and employing multivariable models beyond traditional 
metrics like sensitivity and specificity. The explanatory scientific task aims to establish causal relationships, whether in 
etiological studies or treatment effect studies, which can be exploration or confirmatory, depending on the maturity of the 
causal hypothesis. 

Differentiating these scientific tasks is crucial because it determines the appropriate analysis and result interpretation 
methods. While research with descriptive scientific tasks should avoid unnecessary adjustments that may mask 
disparities, research with predictive scientific tasks requires rigorous validation and calibration, and study with 
explanatory scientific tasks must explicitly address causal assumptions. Each scientific task uniquely contributes to 
knowledge generation: descriptive scientific tasks inform health planning, predictive scientific tasks guide clinical 
decisions, and explanatory scientific tasks underpin interventions. This classification provides a coherent framework for 
aligning research objectives with suitable methods, enhancing the quality and utility of biomedical research. 

Keywords: Biomedical Research, Causality, Forecasting, Biostatistics, Epidemiology, Research Design (source: 
Mesh). 

INTRODUCTION 

Historically, epidemiology has classified studies into 
two broad categories: descriptive and analytical [1]. 
However, this dichotomy has proven inadequate to 
capture the complexity and diversity of modern 
biomedical research. As Hernán et al. [2], note, current 
biomedical research requires a more sophisticated 
conceptual framework that better reflects its objectives 
and methods. 

The primary limitation of the traditional classification 
lies in its failure to recognize that many contemporary 
studies combine both descriptive and analytical 
elements and, more importantly, that research objec-
tives can differ significantly even within the same study 
design [3]. For example, a cohort study can describe a  
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disease's natural history, predict individual clinical 
outcomes, or estimate the causal effects of exposure. 

In response to these limitations, authors like Shmueli 
[4] and Breiman [5] have proposed a classification 
based on scientific tasks, distinguishing between 
explanation, prediction, and description. This framework 
has since been adapted and refined for specific 
applications in biomedical research by Wynants et al. 

[6] and van Calster et al. [7], demonstrating its use- 
fulness in personalized medicine and clinical decision-
making. 

This article presents an updated perspective on the 
classification of biomedical research based on scientific 
tasks, providing a conceptual framework to help 
researchers better align their research objectives with 
appropriate methods and corresponding evaluation 
metrics. Before delving into this topic, we will also 
review a recent issue concerning the association or 
relationship between variables. Thus, the classification 
has theoretical and practical implications fundamental 
to biomedical studies' design, analysis, and reporting. 
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ASSOCIATED FACTOR/RISK: MEANING AND 
CONTROVERSIES 

Simply identifying that two variables are associated 
holds limited clinical value if the context and purpose of 
the association are not specified [8,9]. When 
researchers report an association without clarifying the 
conceptual framework they are working within, their 
findings may need more practical utility or remain at a 
purely descriptive level without practical application. 
This issue is particularly relevant in current biomedical 
literature, where associations are often reported 
without clarifying their nature or potential clinical utility 
[10]. For example, finding that a biomarker is 
"associated" with a disease reveals little about its real 
utility: Can it be used for early diagnosis? Does it have 
predictive value? Does it suggest a causal mechanism 
that could be targeted for therapeutic interventions? 
Answers to these questions require a clear conceptual 
framework from the study design phase onward. In 
modern biomedical research, we can distinguish four 
fundamental types of associations, each with different 
implications and applications: diagnostic, prognostic, 
etiological, and treatment effects [9]. 

In the diagnostic context, an association represents 
a contemporaneous relationship measured at a single 
time point. For example, when a physician observes 
ST-segment elevation on an electrocardiogram, this 
association allows them to identify an ongoing 
myocardial infarction. Similarly, in oncology, the 
combination of a significantly elevated PSA with 
suspicious findings on a digital rectal exam suggests 
the presence of prostate cancer requiring immediate 
evaluation [11]. This diagnostic relationship does not 
imply causation or future prediction; it serves as a tool 
for immediate identification of a present condition. 

Prognostic associations, on the other hand, have a 
predictive and temporal nature, where a factor 
precedes the outcome. The glycated hemoglobin 
(HbA1c) case illustrates the difference between 
prediction and causation. Elevated HbA1c is a major 
prognostic factor for amputation in diabetic patients, 
making it an excellent predictor of future outcomes [12]; 
however, it is not HbA1c that causes amputation but 
rather a marker of prolonged poor glycemic control. 
Similarly, in oncology, elevated lactate dehydrogenase 
(LDH) levels in patients with metastatic melanoma are 
a significant prognostic factor for reduced survival. 
However, LDH itself is not the cause of death but rather 
a marker of tumor aggressiveness [13]. This example 
shows how a factor can have strong predictive value 
without necessarily being the direct cause of the 
outcome. 

Conversely, etiological associations focus on 
understanding the underlying mechanisms explaining a 
phenomenon. In diabetes, for example, understanding 
how sustained hyperglycemia damages vascular 
endothelium and peripheral nerves, leading to diabetic 
neuropathy and vasculopathy, represents an etiological 
association explaining the pathophysiological 
mechanism of diabetic complications. In oncology, 
understanding how EGFR mutations in lung cancer 
lead to uncontrolled cellular proliferation represents an 
etiological association explaining how this specific type 
of cancer develops and progresses. 

When discussing associations in the context of 
treatment effects, we specifically refer to causal 
relationships that can be modified through 
interventions. This distinction is crucial as it implies that 
deliberate changes in one variable (the intervention) 
will produce predictable changes in another (the 
outcome). For example, using EGFR inhibitors in lung 
cancer patients with activating mutations causally 
reduces tumor burden and improves survival. This 
causal relationship has been established through 
randomized controlled trials and can be consistently 
replicated in clinical practice. It is important to note that 
not all associations imply treatment effects: while 
EGFR mutations are associated with treatment 
response both predictively and causally, other markers, 
such as C-reactive protein, although good prognostic 
predictors in cancer, are not direct therapeutic targets, 
as modifying them does not necessarily change the 
disease course [14].  

In public health and social epidemiology research, 
another crucial type of association deserves special 
attention: associations revealing health disparities and 
inequities. This type of association examines how 
health outcomes differ across social, ethnic, 
geographic, or economic groups. Unlike other types of 
associations, the primary objective here is not 
diagnostic, prognostic, etiological, or treatment-related 
but to make visible and quantify health disparities 
among various population groups. For example, the 
association between socioeconomic level and maternal 
mortality or differences in diabetes prevalence among 
ethnic groups are associations revealing structural 
inequities within the healthcare system [5]. Another 
example would be the marked differences in breast 
cancer survival between patients with and without 
access to targeted therapies or disparities in colorectal 
cancer screening rates among different ethnic and 
socioeconomic groups, associations that reveal 
structural inequities within the healthcare system [15]. 
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These associations are fundamental to informing public 
policy and corrective actions to reduce health 
inequities. 

Given these distinctions, researchers should be 
explicit about their objectives and use precise 
terminology that reflects their true research goals. 
When causality is the aim, especially in observational 
studies, researchers can use explicit causal language 
(e.g., 'causal effect', 'etiologic factor', 'treatment effect') 
or alternative terms that maintain causal intent while 
acknowledging methodological limitations, such as 
'effect', 'impact', 'determinant', 'contributing factor', or 
'influence'. These terms avoid ambiguous language like 
'association' or generic 'risk factor' while appropriately 
reflecting methodological constraints. The methodology 
should clearly explain proposed causal mechanisms, 
and the discussion should address causal implications 
[16-18]. 

When the goal is diagnostic, prognostic, or 
descriptive, this should also be clearly stated using 
appropriate terms ('diagnostic factor', 'prognostic 

factor', 'health disparity indicator'). This clarity enables 
better evaluation of methodology and findings, more 
appropriate statistical analyses, and clearer translation 
of results into practice. For instance, a study investi- 
gating whether obesity causes cardiovascular disease 
should explicitly state this causal objective rather than 
describing it as an 'investigation of associations'. 
Similarly, a study developing a prognostic model 
should clearly state its predictive aim rather than using 
ambiguous terminology about 'risk factors'. This 
transparency about research objectives allows readers 
to properly assess whether the chosen methods and 
analyses align with the stated goals [16-18]. 

Descriptive Scientific Tasks in Health Research: 
Definition, Scope, Objectives, and Analysis 

Epidemiological studies with a descriptive scientific 
task are fundamental in biomedical research, although 
their value and complexity have often been 
underestimated [19]. Beyond mere data collection, 
these studies constitute a systematic approach to 
characterizing biomedical phenomena, identifying 

Table 1: Types of Associations in Biomedical Research: Characteristics and Applications 

Type of 
Association Temporality Main Objective Example Practical Utility Key Characteristics 

Diagnostic 
Cross-sectional  
(current 
moment) 

Immediate 
identification of 
conditions 

ST elevation → Current acute 
myocardial infarction 
Pathogenic BRCA1/2 + 
Family history → Hereditary 
breast and ovarian cancer 
syndrome 

Diagnostic 

- Does not imply 
causality or future 
prediction 
- Instantaneous 
relationship 
- Useful for immediate 
decisions 

Prognostic 
Temporal (factor 
precedes 
outcome) 

Anticipate future 
outcomes 

Elevated HbA1c → Future 
risk of amputation 
Elevated Ki-67 in breast 
cancer → Higher risk of 
recurrence 

Risk stratification 
Follow-up planning 
Prevention 

- Not necessarily 
causal 
- Predictive approach 
- Anticipatory value 

Etiological 
Mechanistic  
(explains 
processes) 

Understand 
etiopathogenic 
mechanisms 

Sustained hyperglycemia → 
Endothelial damage and 
neuropathy 
EGFR mutation → 
Constitutive activation of 
signaling pathways → 
Uncontrolled proliferation 

Understanding 
pathogenesis 
Intervention 
development 
Basic research 

- Explains causal 
processes 
- Basis for interventions 
- Scientific foundation 

Treatment 
Effect 

Modifiable 
(intervention → 
outcome) 

Evaluate 
intervention 
impact 

ACE inhibitor → Blood 
pressure reduction 
Osimertinib → EGFR 
mutation inhibition → Tumor 
reduction 

Treatment guidance 
Therapeutic 
decisions 
Intervention 
evaluation 

- Modifiable causal 
relationship 
- Action-oriented 
- Basis for interventions 

Disparities and 
Inequities 

Structural 
(systematic 
differences) 

Highlight health 
gaps 

Socioeconomic level → 
Maternal mortality 
Socioeconomic status → 
Access to innovative cancer 
therapies 

Inform public policy 
Identify inequities 
Social intervention 
planning 

- Avoids adjustments 
that obscure disparities 
- Focus on group 
differences 
- Basis for corrective 
actions 
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emerging patterns, and generating hypotheses for 
future research [20].  

The descriptive scientific task is a systematic 
investigation designed to characterize health 
phenomena' distribution, magnitude, and patterns 
within specific populations [21]. However, their scope 
extends beyond simple case enumeration or frequency 
calculation. As noted by Conroy and Murray [22], this 
approach can provide crucial information on disease 
burden, identify vulnerable groups, and reveal temporal 
or geographical patterns that may suggest underlying 
causal factors. Additionally, they highlight how 
adjustment for confounders in descriptive studies is 
unnecessary and potentially detrimental. Lesko and 
Zalla [23] also emphasize the importance of conducting 
descriptive studies continuously, highlighting the study 
by Tordoff et al. [24] as a representative example of 
this practice. 

The objectives of descriptive scientific tasks include 
the following: 

1. Characterization of patterns and data structure: 
The first objective involves identifying and 
quantifying patterns in biomedical data. This 
includes estimating frequency measures (such as 
prevalence and incidence), central tendency and 
dispersion measures, and characterizing 
distributions [10]. For example, the Global Burden 
of Disease study represents one of the most 
comprehensive descriptive efforts, providing 
detailed estimates of the global distribution of 
diseases and risk factors [25].  

2. Identification of temporal and spatial trends: A 
second crucial objective is to describe how health 
phenomena vary over time and space. Time series 
and spatial analyses enable the identification of 
patterns essential for public health planning and 
hypothesis generation. Epidemiological 
surveillance systems are paradigmatic examples of 
this type of descriptive analysis. 

3. Exploration of associations and hypothesis 
generation: Exploratory data analysis is a core 
component of descriptive research. This process 
enables the identification of potential associations 
between variables and generating hypotheses that 
can later be tested in predictive or explanatory 
studies. However, it is essential to distinguish 
between identifying associations and inferring 
causality [9].  

4. Identification and quantification of disparities and 
inequities: An often overlooked but important 
objective is visualization, allowing descriptive 
studies to reveal health disparities among different 
population groups. Braveman et al. [26] argue that 
this type of analysis is crucial for identifying 
systematic health inequities based on social, 
economic, geographic, or ethnic characteristics. 
For example, studies that describe maternal 
mortality differences between racial groups or 
variations in access to healthcare services across 
socioeconomic regions provide critical evidence for 
developing equitable health policies [27]. 

Research Designs with Descriptive Scientific Tasks 

Research designs commonly used for descriptive 
scientific tasks include classic descriptive studies such 
as cross-sectional and longitudinal designs for 
estimating prevalence or incidence, ecological studies 
for population-level patterns, and economic studies for 
resource utilization analysis. However, it is a common 
misconception to assume that certain study designs 
are inherently linked to specific objectives. Analytical 
cross-sectional, case-control, and cohort studies can 
also be used for descriptive purposes, depending on 
the primary research objective. For instance, a case-
control study on type 2 diabetes may be used 
descriptively to characterize the clinical-metabolic 
profile of patients with and without microvascular 
complications without aiming to establish causality. 
Similarly, a cohort study on breast cancer can be 
employed to describe the natural history of the disease 
and recurrence patterns over time without focusing on 
estimating causal effects. In another example, a classic 
analytical cross-sectional study in mental health could 
detail the distribution and patterns of psychiatric comor- 
bidities across socioeconomic groups without attempt- 
ing to establish predictions or causal relationships. 

Therefore, while epidemiological design traditionally 
categorizes studies as descriptive or analytical, 
considering the scientific task approach helps us better 
understand the research objective and how data should 
be analyzed and interpreted. This perspective allows 
investigators to leverage various study designs to 
address questions with descriptive scientific tasks, 
regardless of whether the design is traditionally 
considered descriptive or analytical [20]. 

Statistical Analysis in Descriptive Scientific Tasks 

As previously noted, statistical analysis in 
descriptive studies is often affected by a problematic 
tendency toward unnecessary variable adjustment, 
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stemming from the mistaken belief that more 
sophisticated analysis is necessarily better [22]. 
Statistical adjustment should have a clear purpose 
based on the study objective. In descriptive research 
that characterizes health disparities, adjustment can 
paradoxically obscure the inequities that must be 
highlighted. For example, suppose a study on racial 
differences in access to health services adjusts for 
socioeconomic status. In that case, it may "statistically 
explain" a disparity that reflects a structural injustice 
that should be recognized and addressed. 

In line with this, Hernán et al. [28] argue that using 
adjusted models can distort the reality communities 
face when the goal is to describe the disease burden in 
different population groups. An illustrative case is 
maternal mortality studies: adjusting for factors such as 
access to prenatal care could mask actual differences 
between geographical regions or social groups—
differences crucial for public health planning and 
resource allocation. When describing population 
characteristics, unadjusted analyses are typically more 
transparent and appropriate, as they reflect the actual 
reality experienced by different groups. 

Moreover, it is important to clarify that this approach 
is not limited to simple univariate or bivariate analyses. 
Regression models can be valuable tools for estimating 
association measures and characterizing relationships 
between variables when pursuing descriptive object- 
ives. For example, a generalized linear model with a 
log-binomial link can characterize diabetes prevalence 
across different age groups, or a linear regression 
model can be applied to describe blood pressure 
patterns across the body mass index spectrum. The 
key is to maintain coherence between the analytical 
methods and the intended descriptive purpose. 

Thus, using regression models in research with 
descriptive scientific tasks is entirely valid, provided the 
model's complexity aligns with the descriptive 
objective. While regression models can be valuable 
tools for describing patterns and relationships, 
researchers should avoid creating unnecessarily 
complex models or performing adjustments that could 
obscure the very patterns they aim to describe. The 
key is maintaining methodological coherence with the 
descriptive scientific task. 

LIMITATIONS OF STUDIES WITH A DESCRIPTIVE 
SCIENTIFIC TASK 

Despite their essential role in biomedical research, 
research with descriptive purposes faces specific me- 
thodological challenges that require careful considera- 

tion. One key limitation in cross-sectional data collection 
is the challenge of temporal ordering - while not aiming 
to establish causality, the inability to determine the 
sequence of events can lead to ambiguous interpreta- 
tions of observed patterns. Additionally, while the 
general principle is to avoid unnecessary adjustments 
that could mask disparities, researchers sometimes 
face legitimate questions about potential confounding 
that require a balanced approach. For instance, when 
characterizing health outcomes across different 
populations, adjustment decisions should consider the 
risk of obscuring important disparities against the need 
to account for fundamental demographic differences. 
Furthermore, changes in disease definitions or 
diagnostic criteria may affect the descriptive approach 
over time, particularly in longitudinal designs, which 
can impact trend analyses and pattern identification. 
Understanding these limitations helps ensure the appro- 
priate implementation and interpretation of research 
with descriptive objectives within its intended scope. 

PREDICTIVE SCIENTIFIC TASK IN HEALTH 
RESEARCH: FUNDAMENTALS AND DIFFERENCES 

Predictive scientific tasks represent a paradigm in 
biomedical research, aiming to develop and validate 
tools that allow for accurate predictions of present or 
future events [29]. Unlike explanatory studies that seek 
to understand causal mechanisms, predictive studies 
focus on the ability to anticipate outcomes with the 
highest possible accuracy, regardless of the underlying 
mechanistic understanding. 

A fundamental feature distinguishing predictive 
studies from other approaches is their adherence to the 
"black box" principle, a concept popularized by Leo 
Breiman [5]. In this paradigm, the emphasis is on 
predictive accuracy rather than interpretability or 
understanding of the underlying mechanism. While 
explanatory models aim to estimate parameters 
representing causal relationships, predictive models 
may include variables that do not have a direct causal 
relationship with the outcome as long as they enhance 
predictive accuracy [4]. For example, a predictive 
model for sepsis may include variables like heart rate 
and body temperature, not because they "cause" 
sepsis but because their combination improves the 
ability to identify at-risk patients. 

This distinction is crucial as it frees predictive 
studies from the constraints imposed by the need for 
causal interpretation. As van Calster et al. [7] and 
Steyerberg [29] argued, a successful predictive model 
does not need to explain why it works; it only needs to 
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function consistently and reliably within the target 
population. This perspective has facilitated the 
adoption of complex machine learning techniques in 
predictive medicine, where algorithms like neural 
networks can capture subtle predictive patterns that 
would be challenging to model using traditional theory-
based approaches. 

Types of Predictive Scientific Task: Diagnostic and 
Prognostic 

Prediction in biomedicine can be oriented along two 
distinct temporal dimensions. The first is contemporary 
prediction, focused on screening and diagnosis, where 
the goal is to identify a condition that is present but not 
directly observable. For example, diagnostic prediction 
models for deep vein thrombosis combine various 
signs, symptoms, and risk factors to estimate the 
current probability of the disease. The second 
dimension is future or prognostic prediction, which aims 
to anticipate events or outcomes that have not yet 
occurred. The 10-year cardiovascular risk prediction 
model exemplifies this prognostic scientific tasks [30].  

Prognostic research, following the PROGRESS 
framework (PROGnosis RESearch Strategy), can be 
classified into four fundamental types [31]: 

1. Overall Prognosis (Type I): This describes the 
natural course and typical outcomes of a health 
condition in a defined population, such as the 5-
year survival rate in patients with lung cancer. 

2. Prognostic Factors (Type II): Identifies specific 
characteristics influencing outcomes, ranging from 
simple variables (age, body mass index) to 
complex molecular markers. 

3. Prognostic Models (Type III): Combines multiple 
prognostic factors to predict an individual’s risk of a 
future outcome. The Framingham model is a 
classic example. 

4. Stratified Prognosis (Type IV): Investigates how 
prognostic factors or models can guide therapeutic 
decisions by identifying which patients may benefit 
most from specific treatments. 

Research Designs in Predictive Scientific Tasks 

The timing of the prediction fundamentally 
determines the choice of study design in predictive 
research. For diagnostic and screening models, where 
the objective is to predict a present but not directly 
observable condition, analytical cross-sectional studies 

are the most appropriate design [32]. In these studies, 
potential predictors and the outcome of interest are 
measured simultaneously at a specific time. However, 
there may be a short technical interval between 
predictor measurement and diagnostic confirmation via 
the gold standard. For example, in developing a model 
for predicting acute appendicitis, data on symptoms, 
signs, and laboratory tests would be collected 
simultaneously with surgical or pathological 
confirmation of the diagnosis. However, cross-sectional 
studies for diagnostic prediction have important 
limitations. They cannot capture temporal changes in 
clinical manifestations that might affect diagnostic 
accuracy, potentially missing early disease markers or 
dynamic progression patterns. Additionally, these 
designs may not account for variations in test 
performance across different disease stages. For 
instance, in early cancer detection, diagnostic accuracy 
often varies depending on tumor progression, a 
limitation that cross-sectional designs cannot 
adequately address. These constraints highlight the 
importance of complementary longitudinal validation 
when developing diagnostic prediction tools. 

Diagnostic prediction has diverse practical appli- 
cations across clinical specialties. For instance, in 
emergency medicine, models combining clinical symp- 
toms, vital signs, and biomarkers help identify high-risk 
sepsis patients requiring immediate intervention. In 
oncology, diagnostic prediction models integrate 
imaging features, molecular markers, and clinical data 
to classify suspicious lesions, such as the BI-RADS 
system for breast imaging or the Lung-RADS for 
pulmonary nodules. These tools support standardized 
risk assessment and guide clinical decision-making 
regarding the need for invasive procedures 

On the other hand, predictive models require cohort 
studies, as their goal is to predict future events [33]. 
These longitudinal designs allow for a clear temporal 
sequence between baseline predictor measurement 
and the occurrence of the event of interest during 
follow-up. A classic example is the development of 
cardiovascular risk prediction models, where risk 
factors are measured at baseline, and follow-up is 
conducted to document cardiovascular events. 
However, it is crucial to recognize that the validity of 
these studies depends not only on the chosen design 
but also on the quality of its implementation, including 
sample representativeness, measurement standardiza- 
tion, and appropriate handling of follow-up and attrition 
[34].  

Predictive Versus. Explanatory Scientific Task 
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Observing how predictive models can reverse the 
biological causal sequence is interesting, illustrating the 
distinction between prediction and causation. A 
paradigmatic example is the relationship between 
jaundice and gallbladder cancer. From a 
pathophysiological and causal perspective, we know 
that cancer causes jaundice through bile duct 
obstruction. However, from diagnostic predictive 
scientific tasks, jaundice becomes a valuable predictor 
for detecting cancer, even though it is a late 
manifestation of the disease [35]. This apparent 
"reversal" of the temporal-causal relationship is seen in 
many other clinical contexts: dyspnea is caused by 
heart failure, but in predictive models, dyspnea helps 
identify heart failure; a brain tumor causes a headache, 
but predictively, headache helps to suspect and detect 
cancer. 

This fundamental distinction between prediction and 
causation underscores why predictive models can and 
should include variables that are consequences rather 
than causes of the condition of interest if they improve 
the model's predictive ability. This flexibility in predictor 
selection, free from causal temporal constraints, is one 
of the reasons predictive models can achieve high 
diagnostic performance, even when including late 
manifestations of the disease. 

Statistical Analysis in Scientific Tasks 

Predictive models are typically constructed using 
various regression techniques, chosen based on the 
nature of the outcome of interest. Logistic regression is 
the most commonly used method for diagnostic 
models, where the result is generally binary 
(presence/absence of disease) [29]. For prognostic 
models, where time to event is crucial, Cox regression 
is the gold standard, allowing for the incorporation of 
censoring and variable follow-up times. For example, 
Cox models can integrate multiple prognostic variables 
in cancer survival prediction while properly handling 
incomplete follow-up for some patients [36]. 

However, these traditional models are increasingly 
complemented or, in some cases, replaced by more 
advanced techniques. Generalized additive models 
allow for modeling nonlinear relationships between 
predictors and outcomes. Machine learning techniques, 
such as random forests, gradient boosting, or neural 
networks, are gaining popularity, especially when large 
datasets are available or when relationships between 
variables are complex [37]. Nevertheless, as Wynants 
et al. [6] note, the choice of statistical method should 
be based not only on predictive performance but also 

on practical considerations, such as model 
interpretability and ease of implementation in clinical 
practice. 

Multivariable models address key limitations of 
traditional single-variable approaches by capturing 
complex interactions between predictors and 
accounting for their relative contributions to risk 
assessment. These models can better handle patient 
heterogeneity and provide more nuanced risk 
stratification than individual markers, leading to more 
accurate and personalized predictions. 

Additionally, traditional predictive evaluation 
concepts such as sensitivity, specificity, predictive 
values, and likelihood ratios, though widely used, have 
significant limitations highlighted by modern research. 
The issue is that these indicators mistakenly assume 
that the performance of a test is constant across all 
patients when it varies based on individual patient 
characteristics and clinical context [38]. For example, 
the sensitivity and specificity of troponin for diagnosing 
myocardial infarction vary according to patient age, 
time since pain onset, and renal disease presence [39]. 
This reality has driven a paradigm shift toward 
multivariable predictive models integrating multiple 
predictors. This updated approach of using models 
rather than individual variables allows for more 
accurate and personalized prediction by considering 
multiple patient characteristics simultaneously. For 
instance, instead of relying solely on D-dimer for 
diagnosing deep vein thrombosis, current models 
combine this biomarker with clinical features, risk 
factors, and other findings to provide more accurate 
and personalized probability estimates. This shift from 
fixed performance measures to dynamic predictive 
models represents an essential evolution toward more 
precise, patient-centered medicine. 

Furthermore, model performance assessment 
requires a multidimensional approach examining three 
fundamental aspects: discrimination, calibration, and 
overall clinical performance. 

1. Discrimination assesses the model’s ability to 
distinguish between individuals who will or will not 
experience the event of interest. The C-statistic 
(equivalent to the area under the ROC curve) is the 
most common measure, where 0.5 indicates 
random prediction and 1.0 indicates perfect 
discrimination. However, as Steyerberg EW [29], 
notes, discrimination alone is insufficient, as a 
model may discriminate well but be poorly 
calibrated. 
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2. Calibration, often considered the "Achilles' heel" of 
clinical prediction, evaluates the concordance bet-
ween predicted probabilities and observed event 
frequencies. A well-calibrated model predicting a 
20% risk should observe the event in approxi-
mately 20 out of every 100 patients with that 
prediction. Calibration can be assessed using cali-
bration plots, Hosmer-Lemeshow tests (though 
increasingly discouraged), and more modern mea-
sures such as calibration slope and intercept [40].  

3. Overall Clinical Performance is evaluated using 
measures such as net benefit and decision curves, 
which consider the clinical impact of model-based 
decisions. These measures are crucial because a 
model may have excellent discrimination and 
calibration but still be clinically useless if its 
decision thresholds do not align with real-world 
clinical practice [41] 

EXPLANATORY STUDIES: THE OFTEN-UNSTATED 
SEARCH FOR CAUSALITY 

Research with explanatory scientific tasks seeks to 
establish causal relationships between health 
exposures and outcomes. Unlike descriptive and 
predictive approaches, explanatory research aims to 
answer the "why" behind health phenomena, aspiring 
to understand the underlying mechanisms connecting 
causes and effects. In clinical practice, this approach 
often falls into two major areas: etiological research, 
which aims to identify disease causes, and treatment 
effect evaluation, which examines the causal impact of 
therapeutic interventions [8,9].  

Explanatory research employs various methodo- 
logical approaches depending on the research question 
and context. Randomized Controlled Trials (RCTs) are 
considered the gold standard for causal inference due 
to their ability to control for known and unknown 
confounders through randomization. However, well-
designed observational studies, particularly prospective 
cohort studies, can also provide strong causal evidence 
when RCTs are not feasible or ethical. While less 
robust for causal inference, case-control studies may 
be valuable in rare outcomes or initial causal 
exploration. Each design offers different strengths for 
causal investigation: RCTs excel in establishing 
treatment effects, cohort studies are particularly useful 
for studying long-term exposures and multiple out- 
comes. In contrast, case-control studies can efficiently 
explore potential causal factors in rare diseases. 

The distinction between etiology and treatment 

effects is critical, as it implies different methodological 
approaches and practical considerations. While 
etiological studies often investigate nonmodifiable risk 
factors or long-term exposures (such as the 
relationship between smoking and lung cancer), 
treatment effect studies focus on specific, modifiable 
interventions (such as the efficacy of a new drug). 
However, both share the fundamental goal of 
establishing causal relationships that can inform clinical 
practice and public health policies [8,9]. 

Reluctance to Discuss Causality 

Explanatory scientific task represent a unique 
paradigm where a peculiar dichotomy exists: while 
most researchers implicitly seek to establish causal 
relationships, there is widespread reluctance to state 
these intentions explicitly [2,9]. More concerning is that 
many researchers appear unaware that they are 
conducting causal research, even though their methods 
suggest it: they use directed acyclic graphs (DAGs), 
adjust for confounders, and assess interactions and 
mediation—all tools from the causal inference toolkit. 
These disconnects between the methods employed 
and the true research objective can lead to inadequate 
interpretations and ambiguous conclusions. Unfortu- 
nately, this lack of conceptual clarity affects research 
quality and complicates the critical evaluation of gene- 
rated evidence, as researchers conduct causal ana- 
lyses without acknowledging or fully understanding it. 

The reasons why most researchers avoid using the 
term "causality" in their studies are varied. First, there 
is a deeply ingrained caution around causal language, 
so much so that some scientific journals explicitly 
prohibit causal terminology in observational studies, 
reserving it exclusively for RCTs [16,17]. However, this 
stance can be counterproductive, as observational 
designs, backed by strong arguments and 
methodologies, can serve as the first step in causal 
exploration, which may be unfeasible in experimental 
studies for economic or ethical reasons. Thus, limiting 
causality claims to RCTs would confine causal 
understanding to studies using this design alone, 
potentially excluding critical findings [8,9].  

Another reason this conceptual confusion manifests 
in practice is the selection of study design when deter- 
mining relationships between variables. Researchers 
frequently resort to cross-sectional designs, which, 
while useful, have inherent limitations for causal infe- 
rence, including the phenomenon known as "reverse 
causation" [10]. Faced with these methodological 
limitations, authors often take refuge in conservative 
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terms like "association" or "risk," even when their true 
objective is to explore causal relationships (especially 
since, as noted initially, they use tools typically 
associated with an explanatory scientific task). 

For this reason, while many researchers may want 
to avoid pursuing causality, two methodologically 
coherent paths can be considered. The first is to 
remain within the descriptive realm, refraining from 
causal language and the tools specific to causal 
inference. Alternatively, a second option is to openly 
acknowledge the study's causal intentions, employing 
appropriate methodological tools while explicitly 
discussing the design’s limitations for causal inference. 
Though more challenging, this second scientific tasks 
allows for a more transparent and critical evaluation of 
the evidence generated [2,8]. 

Classification of the Explanatory Scientific Task 

The explanatory approach can be approached from 
two complementary perspectives, exploratory and 
confirmatory, which reflect different stages in building 
causal knowledge [42].  

The exploratory scientific tasks represent an initial 
investigation into potential causal relationships. 
Researchers examine multiple possible relationships 
without a strongly preconceived hypothesis in this 
context, searching for patterns that suggest plausible 
causal mechanisms. For example, studies that initially 
identified the association between oral contraceptive 
use and venous thromboembolism began as 
exploratory investigations [43]. Although these studies 
have inherent limitations due to their exploratory 
nature, they are essential for developing new causal 
hypotheses that warrant further research. 

The exploratory scientific tasks typically rely more 
on observational data, such as cohort or case-control 
studies, where researchers can simultaneously examine 
multiple potential causal relationships. In contrast, the 
confirmatory approach often employs more structured 
designs like randomized controlled trials or carefully 
controlled observational studies with pre-specified 
hypotheses and rigorous control of potential 
confounders. This progression from observational 
exploration to controlled confirmation reflects the 
natural maturation of causal evidence. For example, 
the investigation of smoking's health effects began with 
observational studies exploring multiple potential 
outcomes before moving to more focused controlled 
studies examining specific causal mechanisms. 

On the other hand, the confirmatory approach 
represents a more mature stage in causal research, 
where the goal is to verify specific, previously 
formulated causal hypotheses. These studies are 
characterized by pre-specified hypotheses, clearly 
defined assessment criteria, and methods to control 
known confounding factors. A classic example would 
be a study specifically designed to confirm the causal 
role of HPV in cervical cancer, with precise 
measurements of exposure, control of known 
confounders, and an appropriate timeframe [44].  

However, as Greenland warns [45], the distinction 
between these approaches is not always clear in 
practice. Many studies combine exploratory and 
confirmatory elements, and the current trend is to 
acknowledge this duality rather than enforce a 
dichotomous classification. Thus, it is essential to 
highlight that the path from exploration to causal 
confirmation typically follows natural progression in 
biomedical research. In the initial stages, the approach 
tends to be exploratory when using classical 
epidemiological designs such as cross-sectional or 
case-control studies (as discussed below) and 
recognizing their inherent limitations. Although these 
studies cannot establish definitive causality, they are 
fundamental in generating hypotheses and indicating 
promising directions for research. On the other hand, 
when a solid theory is supported by preliminary 
evidence and more robust designs such as RCTs or 
observational studies with advanced causal inference 
methods (such as instrumental variables or sensitivity 
analyses) are employed, we can speak of a 
confirmatory approach. This natural progression from 
exploration to confirmation reflects the maturation of 
scientific knowledge and the gradual accumulation of 
causal evidence. 

Research Designs with a Explanatory Scientific 
Task 

Causal-focused studies can be implemented 
through various research designs, both observational 
and experimental. Among observational designs, 
cross-sectional studies, although widely used for their 
efficiency and feasibility, have significant limitations for 
causal inference due to the inability to establish 
temporality between exposure and outcome. Therefore, 
they can be useful in initiating the search for potential 
etiological factors, albeit with noted limitations. Case-
control studies can go a bit further and are especially 
useful for studying rare events and more resource-
efficient [10].  
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Cohort studies, on the other hand, represent one of 
the most robust observational designs for causal 
inference, as they establish temporality and allow for 
the evaluation of multiple outcomes. A paradigmatic 
example is the study of the causal relationship between 
smoking and lung cancer, where observational evidence 
was so convincing that it established causality without 
the need for RCTs. This case illustrates how well-
designed observational studies can provide solid 
causal evidence, especially when findings are 
consistent across multiple studies and populations [46].  

RCTs are considered the gold standard for causal 
inference due to their ability to control known and 
unknown confounding factors through randomization. 
However, they also present limitations: they are costly, 
may face external validity issues, and are often 
unethical or infeasible. Additionally, randomization 
alone does not guarantee the absence of other biases, 
such as loss to follow-up or non-compliance with the 
assigned treatment [8].  

It is important to recognize that each design has 
strengths and weaknesses for causal inference. The 
design should be based on methodological 
considerations and practical, ethical, and study-specific 
aspects. The strongest evidence often emerges from 
triangulating results from different study designs [47].  

Classical Statistical Analyses Used in Explanatory 
Scientific Tasks 

Choosing effect measures is crucial for correctly 
interpreting results in causally focused studies. Relative 
Risk (RR) is one of the most intuitive and directly 
interpretable measures, representing how many times 
more likely the event is to occur in the exposed group 
compared to the non-exposed group. Hazard Ratios 
(HR) are especially useful in longitudinal studies where 
time to event is important, allowing for the incorporation 
of censored data and variable follow-up times [10].  

The Odds Ratio (OR) is often used, particularly in 
case-control studies, although its interpretation requires 
caution. While OR approximates RR when the event is 
rare (less than 10%), it may overestimate the associa-
tion when the event is common. In a causal context, it 
is essential to remember that these association 
measures can only be interpreted as causal effects 
when the fundamental assumptions of consistency, 
exchangeability, and positivity are met [10].  

Absolute effect measures, such as Risk Difference 
and Number Needed to Treat (NNT), are particularly 

valuable for public health decision-making and clinical 
practice. NNT, which indicates how many individuals 
need to be treated to prevent an additional event, 
provides a more tangible measure of an intervention’s 
impact. However, it is important to consider that NNT 
can vary significantly depending on the baseline risk of 
the studied population [10].  

While these traditional effect measures have proven 
useful in clinical fields, advances in epidemiological 
methodology have opened new horizons in explanatory 
approaches. Advances in causal inference theory have 
provided more sophisticated tools for rigorously 
analyzing cause-effect relationships, representing 
technical advancement and a fundamental shift in our 
understanding of causality in epidemiology, as 
discussed below. 

Modern Assumptions in Explanatory Scientific 
Tasks 

In recent decades, traditional epidemiological 
research approaches have been complemented by 
more rigorous causal frameworks to strengthen the 
validity of causal inferences. This evolution has led to 
the development of fundamental assumptions that must 
be met for valid causal effect estimation, providing a 
more solid conceptual framework to evaluate our 
conclusions [8]. 

In modern causal inference, three assumptions go 
beyond the classical Bradford Hill criteria: consistency, 
exchangeability, and positivity. Consistency establishes 
that the observed outcome under a specific treatment 
should correspond to the potential outcome under that 
same treatment, a crucial concept for linking observed 
outcomes with counterfactuals. Exchangeability, 
modernizing the traditional idea of confounding, implies 
that comparison groups are similar in all relevant 
aspects except for the exposure of interest. Positivity 
requires that each individual has a non-zero probability 
of receiving any treatment level, a rarely considered 
assumption in traditional approaches [48].  

In addition to these fundamental assumptions, the 
modern approach incorporates new methodological 
tools such as advanced statistical methods like the g-
formula and inverse probability weighting. These 
methods enable the estimation of different types of 
causal effects, both at the individual and population 
levels, including the average treatment effect (ATE), 
effect among treated individuals (ATT), and controlled 
and natural causal effects in mediation analyses [47]. 
Additionally, in this context, these traditional estimators 
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are complemented by more sophisticated methods 
such as standardization, inverse probability weighting 
(IPTW), and G-methods, which allow for better control 
of confounding and more precise causal effect 
estimation in the presence of time-dependent 
confounders or mediation [47].  

The validity of these assumptions must be carefully 
evaluated in each research context. While some 
assumptions are met by design in RCTs, observational 
studies require more detailed consideration and 
possibly additional methodological adjustments. 
However, RCTs also face important challenges in 
meeting causal assumptions. Treatment non-
compliance can violate consistency assumptions, 
differential loss to follow-up may compromise 
exchangeability, and strict inclusion/exclusion criteria 
can affect positivity. Additionally, protocol deviations, 
crossover effects, and missing data can threaten the 
validity of causal estimates even in randomized 
designs. Understanding these limitations is crucial for 
proper causal inference in experimental studies [49].  

An Additional Challenge in Explanatory Scientific 
Tasks: Manipulable vs. Non-manipulable Variables 

The distinction between manipulable and non-
manipulable variables is fundamental in causal 
inference, as it directly impacts how we study and 
understand causal relationships. Manipulable variables 
can be directly controlled or modified in a study (e.g., 
administering a medication). In contrast, non-
manipulable variables are characteristics or states that 
cannot be randomly assigned (e.g., obesity, gender, or 
age) [8].  

Non-manipulable variables challenge causal 
inference because they cannot be directly controlled or 
assigned in a study. Obesity perfectly illustrates this 
complexity: while we can observe different Body Mass 
Index (BMI) levels in a population, we cannot "assign" 
people to be obese or non-obese as we would with a 
traditional medical intervention [8].  

To understand this better, consider the following 
example: imagine conducting three hypothetical RCTs 

Table 2: Biomedical Research Scientific Tasks: Comparison of Descriptive, Predictive, and Explanatory 

Characteristic Descriptive  Predictive  Explanatory  

Main objective Characterize patterns, distributions, 
and trends 

Anticipate future outcomes or identify 
current conditions Establish causal relationships 

Key questions 
What is happening? 
How is it distributed? 
Where and when does it occur? 

What is the probability of occurrence? 
Who is at risk? 

Why does it occur? 
What causes it? 

Examples 

- Diabetes prevalence by region 
- COVID-19 temporal trends 
- Characterization of health inequities 
- Molecular distribution of breast 
cancer by subtypes 

- 10-year cardiovascular risk 
- Sepsis prediction 
- Venous thrombosis diagnosis 
- Predictors of colorectal cancer 
recurrence 

- Effect of statins on mortality 
- Causality between smoking and 
cancer 
- Impact of health interventions 

Typical 
methods 

- Frequency measures 
- Trend analysis 
- Data visualization 
- Descriptive statistics 

- Predictive regression models 
- Machine learning 
- Validation and calibration 
- Predictive performance metrics 

- Causal analysis 
- Directed Acyclic Graphs (DAGs) 
- Confounder adjustment 
- Mediation analysis 

Common 
designs 

- Cross-sectional studies 
- Case series 
- Ecological studies 

- Cohort studies 
- Analytical cross-sectional studies 
- Diagnostic studies 

- Clinical trials 
- Cohort studies 
- Case-control studies 

Special 
considerations 

- Avoid unnecessary adjustments 
- Highlight disparities 
- Do not infer causation 

- External validation 
- Calibration 
- Periodic updates 

- Confounding control 
- Temporality 
- Causal assumptions 

Primary 
application 

- Health planning 
- Trend monitoring 
- Problem identification 

- Clinical decision-making 
- Risk stratification 
- Early diagnosis 

- Therapeutic interventions 
- Health policy 
- Prevention 

Limitations 
- Does not establish causation 
- Does not predict future outcomes 
- Possible ecological fallacy 

- Requires ongoing validation 
- May lack generalizability 
- Data quality dependent 

- Causation difficult to establish 
- Residual confounding 
- Selection bias 
 



Scientific Tasks in Biomedical and Oncological Research Journal of Cancer Research Updates, 2024, Vol. 13     63 

to reduce BMI—one based on intensive exercise, 
another on a restrictive dietary intervention, and a third 
combining moderate exercise and diet. Although all 
three studies achieved the same reduction in BMI, 
each showed different effects on mortality. This occurs 
because each weight reduction method can have direct 
health effects beyond those mediated solely through 
BMI change [50]. This leads us to an important 
conclusion: when studying the "effect of obesity," we 
investigate the effects of different mechanisms and 
interventions that lead to a particular BMI. Therefore, it 
is not obesity that we can manipulate but interventions 
that lead to body weight changes. This has crucial 
implications for research and public health policy, 
suggesting that we should focus on studying the effects 
of specific, well-defined interventions rather than trying 
to estimate the general effect of obesity [50].  

Conclusions, Challenges, and Perspectives in 
Scientific Task-Oriented Approaches 

Classifying biomedical research into descriptive, 
predictive, and explanatory scientific tasks represents a 
significant advancement over the traditional 
descriptive-analytical dichotomy. However, each 
approach faces challenges that merit attention. In 
research with descriptive scientific tasks, the primary 
challenge lies in avoiding unnecessary adjustments 
that could obscure important disparities, especially 
when the goal is to highlight health inequities. In 
research with predictive scientific tasks, the challenge 
lies in continuously validating and updating models 
across different populations and effectively integrating 
these tools into clinical practice. In research with 
explanatory scientific tasks, the tension persists 
between the need to establish causality, the inherent 
limitations of observational designs, and the historical 
reluctance to declare causal objectives explicitly. 

All three approaches share the common challenge 
of methodological transparency. Researchers must be 
clear about their objectives and methods, recognizing 
that each scientific task requires different analytical 
techniques. For example, a cohort study can be used 
for descriptive, predictive, or explanatory purposes, but 
the analysis methods and interpretation of results will 
differ substantially depending on the primary objective. 

In the current context of evidence-based health 
application, it is crucial to recognize that these 
approaches are not mutually exclusive but 
complementary. Descriptive scientific tasks can 
generate hypotheses later evaluated in explanatory 
scientific tasks, while findings from predictive studies 

can inform the description of phenomena and the 
investigation of causal mechanisms. This 
interrelationship underscores the importance of 
maintaining methodological rigor specific to each 
approach. 

Looking ahead, advances in statistical methodology 
and the availability of large databases are likely to 
continue expanding the possibilities of each approach. 
However, the key to success will remain the proper 
alignment between research objectives and the 
methods employed. Researchers should resist the 
temptation to make inferences beyond the scope of 
their study design, whether attempting to establish 
causality from purely descriptive scientific tasks or 
extrapolating predictions beyond the populations in 
which the models were developed. 

The scientific community should work towards 
developing specific methodological guidelines for each 
scientific task, recognizing their unique requirements 
and particularities. This will facilitate the planning and 
evaluation of biomedical research, contributing to more 
transparent and reproducible science. The goal is to 
generate evidence that is methodologically sound and 
useful for decision-making in public health and clinical 
practice. 
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