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Abstract: The traditional classification of studies as descriptive and analytical has proven insufficient to capture the
complexity of modern biomedical research, including oncology. This article proposes classification based on scientific
tasks that distinguish three main categories: descriptive, predictive, and explanatory. The descriptive scientific task
seeks to characterize patterns, distributions, and trends in health, serving as a foundation for highlighting disparities and
inequities. The predictive scientific task focuses on anticipating future outcomes or identifying conditions, distinguishing
between diagnostic (current) and prognostic (future) predictions, and employing multivariable models beyond traditional
metrics like sensitivity and specificity. The explanatory scientific task aims to establish causal relationships, whether in
etiological studies or treatment effect studies, which can be exploration or confirmatory, depending on the maturity of the
causal hypothesis.

Differentiating these scientific tasks is crucial because it determines the appropriate analysis and result interpretation
methods. While research with descriptive scientific tasks should avoid unnecessary adjustments that may mask
disparities, research with predictive scientific tasks requires rigorous validation and calibration, and study with
explanatory scientific tasks must explicitly address causal assumptions. Each scientific task uniquely contributes to
knowledge generation: descriptive scientific tasks inform health planning, predictive scientific tasks guide clinical
decisions, and explanatory scientific tasks underpin interventions. This classification provides a coherent framework for

Research:

aligning research objectives with suitable methods, enhancing the quality and utility of biomedical research.

Keywords: Biomedical Research, Causality, Forecasting, Biostatistics, Epidemiology, Research Design (source:

Mesh).
INTRODUCTION

Historically, epidemiology has classified studies into
two broad categories: descriptive and analytical [1].
However, this dichotomy has proven inadequate to
capture the complexity and diversity of modern
biomedical research. As Hernan et al. [2], note, current
biomedical research requires a more sophisticated
conceptual framework that better reflects its objectives
and methods.

The primary limitation of the traditional classification
lies in its failure to recognize that many contemporary
studies combine both descriptive and analytical
elements and, more importantly, that research objec-
tives can differ significantly even within the same study
design [3]. For example, a cohort study can describe a
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disease's natural history, predict individual clinical
outcomes, or estimate the causal effects of exposure.

In response to these limitations, authors like Shmueli
[4] and Breiman [5] have proposed a classification
based on scientific tasks, distinguishing between
explanation, prediction, and description. This framework
has since been adapted and refined for specific
applications in biomedical research by Wynants et al.
[6] and van Calster et al. [7], demonstrating its use-
fulness in personalized medicine and clinical decision-
making.

This article presents an updated perspective on the
classification of biomedical research based on scientific
tasks, providing a conceptual framework to help
researchers better align their research objectives with
appropriate  methods and corresponding evaluation
metrics. Before delving into this topic, we will also
review a recent issue concerning the association or
relationship between variables. Thus, the classification
has theoretical and practical implications fundamental
to biomedical studies' design, analysis, and reporting.
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ASSOCIATED FACTOR/RISK:
CONTROVERSIES

MEANING AND

Simply identifying that two variables are associated
holds limited clinical value if the context and purpose of
the association are not specified [8,9]. When
researchers report an association without clarifying the
conceptual framework they are working within, their
findings may need more practical utility or remain at a
purely descriptive level without practical application.
This issue is particularly relevant in current biomedical
literature, where associations are often reported
without clarifying their nature or potential clinical utility
[10]. For example, finding that a biomarker is
"associated" with a disease reveals little about its real
utility: Can it be used for early diagnosis? Does it have
predictive value? Does it suggest a causal mechanism
that could be targeted for therapeutic interventions?
Answers to these questions require a clear conceptual
framework from the study design phase onward. In
modern biomedical research, we can distinguish four
fundamental types of associations, each with different
implications and applications: diagnostic, prognostic,
etiological, and treatment effects [9].

In the diagnostic context, an association represents
a contemporaneous relationship measured at a single
time point. For example, when a physician observes
ST-segment elevation on an electrocardiogram, this
association allows them to identify an ongoing
myocardial infarction. Similarly, in oncology, the
combination of a significantly elevated PSA with
suspicious findings on a digital rectal exam suggests
the presence of prostate cancer requiring immediate
evaluation [11]. This diagnostic relationship does not
imply causation or future prediction; it serves as a tool
for immediate identification of a present condition.

Prognostic associations, on the other hand, have a
predictive and temporal nature, where a factor
precedes the outcome. The glycated hemoglobin
(HbA1c) case illustrates the difference between
prediction and causation. Elevated HbA1c is a major
prognostic factor for amputation in diabetic patients,
making it an excellent predictor of future outcomes [12];
however, it is not HbA1c that causes amputation but
rather a marker of prolonged poor glycemic control.
Similarly, in oncology, elevated lactate dehydrogenase
(LDH) levels in patients with metastatic melanoma are
a significant prognostic factor for reduced survival.
However, LDH itself is not the cause of death but rather
a marker of tumor aggressiveness [13]. This example
shows how a factor can have strong predictive value
without necessarily being the direct cause of the
outcome.

Conversely, etiological associations focus on
understanding the underlying mechanisms explaining a
phenomenon. In diabetes, for example, understanding
how sustained hyperglycemia damages vascular
endothelium and peripheral nerves, leading to diabetic
neuropathy and vasculopathy, represents an etiological
association explaining the pathophysiological
mechanism of diabetic complications. In oncology,
understanding how EGFR mutations in lung cancer
lead to uncontrolled cellular proliferation represents an
etiological association explaining how this specific type
of cancer develops and progresses.

When discussing associations in the context of
treatment effects, we specifically refer to causal
relationships that can be modified through
interventions. This distinction is crucial as it implies that
deliberate changes in one variable (the intervention)
will produce predictable changes in another (the
outcome). For example, using EGFR inhibitors in lung
cancer patients with activating mutations causally
reduces tumor burden and improves survival. This
causal relationship has been established through
randomized controlled trials and can be consistently
replicated in clinical practice. It is important to note that
not all associations imply treatment effects: while
EGFR mutations are associated with treatment
response both predictively and causally, other markers,
such as C-reactive protein, although good prognostic
predictors in cancer, are not direct therapeutic targets,
as modifying them does not necessarily change the
disease course [14].

In public health and social epidemiology research,
another crucial type of association deserves special
attention: associations revealing health disparities and
inequities. This type of association examines how
health outcomes differ across social, ethnic,
geographic, or economic groups. Unlike other types of
associations, the primary objective here is not
diagnostic, prognostic, etiological, or treatment-related
but to make visible and quantify health disparities
among various population groups. For example, the
association between socioeconomic level and maternal
mortality or differences in diabetes prevalence among
ethnic groups are associations revealing structural
inequities within the healthcare system [5]. Another
example would be the marked differences in breast
cancer survival between patients with and without
access to targeted therapies or disparities in colorectal
cancer screening rates among different ethnic and
socioeconomic groups, associations that reveal
structural inequities within the healthcare system [15].
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These associations are fundamental to informing public
policy and corrective actions to reduce health
inequities.

Given these distinctions, researchers should be
explicit about their objectives and use precise
terminology that reflects their true research goals.
When causality is the aim, especially in observational
studies, researchers can use explicit causal language
(e.g., 'causal effect', 'etiologic factor', 'treatment effect’)
or alternative terms that maintain causal intent while
acknowledging methodological limitations, such as
‘effect’, 'impact', 'determinant’, 'contributing factor', or
'influence'. These terms avoid ambiguous language like
'association' or generic 'risk factor' while appropriately
reflecting methodological constraints. The methodology
should clearly explain proposed causal mechanisms,
and the discussion should address causal implications
[16-18].

When the goal is diagnostic, prognostic, or
descriptive, this should also be clearly stated using

factor', 'health disparity indicator'). This clarity enables
better evaluation of methodology and findings, more
appropriate statistical analyses, and clearer translation
of results into practice. For instance, a study investi-
gating whether obesity causes cardiovascular disease
should explicitly state this causal objective rather than
describing it as an 'investigation of associations'.
Similarly, a study developing a prognostic model
should clearly state its predictive aim rather than using
ambiguous terminology about 'risk factors'. This
transparency about research objectives allows readers
to properly assess whether the chosen methods and
analyses align with the stated goals [16-18].

Descriptive Scientific Tasks in Health Research:
Definition, Scope, Objectives, and Analysis

Epidemiological studies with a descriptive scientific
task are fundamental in biomedical research, although
their value and complexity have often been
underestimated [19]. Beyond mere data collection,
these studies constitute a systematic approach to
characterizing biomedical phenomena, identifying

appropriate terms (‘diagnostic factor', 'prognostic
Table 1: Types of Associations in Biomedical Research: Characteristics and Applications
Type of . . I . - s
Association Temporality Main Objective Example Practical Utility Key Characteristics
. - Does not imply
aT:CI‘;‘:SZTUn;rSFg;e”t acute causality or future
ial i i P
Cross-sectional Immediate y i prediction
Diagnostic (current identification of Pathogenic BRCA1/2 + Diagnostic - Instantaneous
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breast and ovarian cancer . .
syndrome - Useful for immediate
decisions
Elevated HbA1c — Future ) o - Not necessarily
Temporal (factor Anticipate future risk of amputation Risk stratification causal
Prognostic precedes outcomes Elevated Ki-.67 in preast Follow-up planning - Predictive approach
outcome) cancer — Higher risk of Prevention -
recurrence - Anticipatory value
Sustained hyperglycemia — )
Endothelial damage and Untc:]erstand[ng - Explains causal
Mechanistic Understand neuropathy pathogenesis processes
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processes) mechanisms Constitutive activation of development o )
signaling pathways — Basic research - Scientific foundation
Uncontrolled proliferation
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differences) Access to innovative cancer Social intervention
therapies planning - Basis for corrective
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emerging patterns, and generating hypotheses for
future research [20].

The descriptive scientific task is a systematic
investigation  designed to characterize health
phenomena' distribution, magnitude, and patterns
within specific populations [21]. However, their scope
extends beyond simple case enumeration or frequency
calculation. As noted by Conroy and Murray [22], this
approach can provide crucial information on disease
burden, identify vulnerable groups, and reveal temporal
or geographical patterns that may suggest underlying
causal factors. Additionally, they highlight how
adjustment for confounders in descriptive studies is
unnecessary and potentially detrimental. Lesko and
Zalla [23] also emphasize the importance of conducting
descriptive studies continuously, highlighting the study
by Tordoff et al. [24] as a representative example of
this practice.

The objectives of descriptive scientific tasks include
the following:

1. Characterization of patterns and data structure:
The first objective involves identifying and
quantifying patterns in biomedical data. This
includes estimating frequency measures (such as
prevalence and incidence), central tendency and
dispersion measures, and characterizing
distributions [10]. For example, the Global Burden
of Disease study represents one of the most
comprehensive descriptive  efforts, providing
detailed estimates of the global distribution of
diseases and risk factors [25].

2. ldentification of temporal and spatial trends: A
second crucial objective is to describe how health
phenomena vary over time and space. Time series
and spatial analyses enable the identification of
patterns essential for public health planning and
hypothesis generation. Epidemiological
surveillance systems are paradigmatic examples of
this type of descriptive analysis.

3. Exploration of associations and hypothesis
generation: Exploratory data analysis is a core
component of descriptive research. This process
enables the identification of potential associations
between variables and generating hypotheses that
can later be tested in predictive or explanatory
studies. However, it is essential to distinguish
between identifying associations and inferring
causality [9].

4. Identification and quantification of disparities and
inequities: An often overlooked but important
objective is visualization, allowing descriptive
studies to reveal health disparities among different
population groups. Braveman et al. [26] argue that
this type of analysis is crucial for identifying
systematic health inequities based on social,
economic, geographic, or ethnic characteristics.
For example, studies that describe maternal
mortality differences between racial groups or
variations in access to healthcare services across
socioeconomic regions provide critical evidence for
developing equitable health policies [27].

Research Designs with Descriptive Scientific Tasks

Research designs commonly used for descriptive
scientific tasks include classic descriptive studies such
as cross-sectional and longitudinal designs for
estimating prevalence or incidence, ecological studies
for population-level patterns, and economic studies for
resource utilization analysis. However, it is a common
misconception to assume that certain study designs
are inherently linked to specific objectives. Analytical
cross-sectional, case-control, and cohort studies can
also be used for descriptive purposes, depending on
the primary research objective. For instance, a case-
control study on type 2 diabetes may be used
descriptively to characterize the clinical-metabolic
profile of patients with and without microvascular
complications without aiming to establish causality.
Similarly, a cohort study on breast cancer can be
employed to describe the natural history of the disease
and recurrence patterns over time without focusing on
estimating causal effects. In another example, a classic
analytical cross-sectional study in mental health could
detail the distribution and patterns of psychiatric comor-
bidities across socioeconomic groups without attempt-
ing to establish predictions or causal relationships.

Therefore, while epidemiological design traditionally
categorizes studies as descriptive or analytical,
considering the scientific task approach helps us better
understand the research objective and how data should
be analyzed and interpreted. This perspective allows
investigators to leverage various study designs to
address questions with descriptive scientific tasks,
regardless of whether the design is traditionally
considered descriptive or analytical [20].

Statistical Analysis in Descriptive Scientific Tasks

As previously noted, statistical analysis in
descriptive studies is often affected by a problematic
tendency toward unnecessary variable adjustment,
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stemming from the mistaken belief that more
sophisticated analysis is necessarily better [22].
Statistical adjustment should have a clear purpose
based on the study objective. In descriptive research
that characterizes health disparities, adjustment can
paradoxically obscure the inequities that must be
highlighted. For example, suppose a study on racial
differences in access to health services adjusts for
socioeconomic status. In that case, it may "statistically
explain" a disparity that reflects a structural injustice
that should be recognized and addressed.

In line with this, Hernan et al. [28] argue that using
adjusted models can distort the reality communities
face when the goal is to describe the disease burden in
different population groups. An illustrative case is
maternal mortality studies: adjusting for factors such as
access to prenatal care could mask actual differences
between geographical regions or social groups—
differences crucial for public health planning and
resource allocation. When describing population
characteristics, unadjusted analyses are typically more
transparent and appropriate, as they reflect the actual
reality experienced by different groups.

Moreover, it is important to clarify that this approach
is not limited to simple univariate or bivariate analyses.
Regression models can be valuable tools for estimating
association measures and characterizing relationships
between variables when pursuing descriptive object-
ives. For example, a generalized linear model with a
log-binomial link can characterize diabetes prevalence
across different age groups, or a linear regression
model can be applied to describe blood pressure
patterns across the body mass index spectrum. The
key is to maintain coherence between the analytical
methods and the intended descriptive purpose.

Thus, using regression models in research with
descriptive scientific tasks is entirely valid, provided the
model's complexity aligns with the descriptive
objective. While regression models can be valuable
tools for describing patterns and relationships,
researchers should avoid creating unnecessarily
complex models or performing adjustments that could
obscure the very patterns they aim to describe. The
key is maintaining methodological coherence with the
descriptive scientific task.

LIMITATIONS OF STUDIES WITH A DESCRIPTIVE
SCIENTIFIC TASK

Despite their essential role in biomedical research,
research with descriptive purposes faces specific me-
thodological challenges that require careful considera-

tion. One key limitation in cross-sectional data collection
is the challenge of temporal ordering - while not aiming
to establish causality, the inability to determine the
sequence of events can lead to ambiguous interpreta-
tions of observed patterns. Additionally, while the
general principle is to avoid unnecessary adjustments
that could mask disparities, researchers sometimes
face legitimate questions about potential confounding
that require a balanced approach. For instance, when
characterizing health outcomes across different
populations, adjustment decisions should consider the
risk of obscuring important disparities against the need
to account for fundamental demographic differences.
Furthermore, changes in disease definitions or
diagnostic criteria may affect the descriptive approach
over time, particularly in longitudinal designs, which
can impact trend analyses and pattern identification.
Understanding these limitations helps ensure the appro-
priate implementation and interpretation of research
with descriptive objectives within its intended scope.

PREDICTIVE SCIENTIFIC TASK IN HEALTH
RESEARCH: FUNDAMENTALS AND DIFFERENCES

Predictive scientific tasks represent a paradigm in
biomedical research, aiming to develop and validate
tools that allow for accurate predictions of present or
future events [29]. Unlike explanatory studies that seek
to understand causal mechanisms, predictive studies
focus on the ability to anticipate outcomes with the
highest possible accuracy, regardless of the underlying
mechanistic understanding.

A fundamental feature distinguishing predictive
studies from other approaches is their adherence to the
"black box" principle, a concept popularized by Leo
Breiman [5]. In this paradigm, the emphasis is on
predictive accuracy rather than interpretability or
understanding of the underlying mechanism. While
explanatory models aim to estimate parameters
representing causal relationships, predictive models
may include variables that do not have a direct causal
relationship with the outcome as long as they enhance
predictive accuracy [4]. For example, a predictive
model for sepsis may include variables like heart rate
and body temperature, not because they "cause"
sepsis but because their combination improves the
ability to identify at-risk patients.

This distinction is crucial as it frees predictive
studies from the constraints imposed by the need for
causal interpretation. As van Calster et al. [7] and
Steyerberg [29] argued, a successful predictive model
does not need to explain why it works; it only needs to
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function consistently and reliably within the target
population. This perspective has facilitated the
adoption of complex machine learning techniques in
predictive medicine, where algorithms like neural
networks can capture subtle predictive patterns that
would be challenging to model using traditional theory-
based approaches.

Types of Predictive Scientific Task: Diagnostic and
Prognostic

Prediction in biomedicine can be oriented along two
distinct temporal dimensions. The first is contemporary
prediction, focused on screening and diagnosis, where
the goal is to identify a condition that is present but not
directly observable. For example, diagnostic prediction
models for deep vein thrombosis combine various
signs, symptoms, and risk factors to estimate the
current probability of the disease. The second
dimension is future or prognostic prediction, which aims
to anticipate events or outcomes that have not yet
occurred. The 10-year cardiovascular risk prediction
model exemplifies this prognostic scientific tasks [30].

Prognostic research, following the PROGRESS
framework (PROGnosis RESearch Strategy), can be
classified into four fundamental types [31]:

1. Overall Prognosis (Type I): This describes the
natural course and typical outcomes of a health
condition in a defined population, such as the 5-
year survival rate in patients with lung cancer.

2. Prognostic Factors (Type Il): Identifies specific
characteristics influencing outcomes, ranging from
simple variables (age, body mass index) to
complex molecular markers.

3. Prognostic Models (Type Ill): Combines multiple
prognostic factors to predict an individual’s risk of a
future outcome. The Framingham model is a
classic example.

4. Stratified Prognosis (Type IV): Investigates how
prognostic factors or models can guide therapeutic
decisions by identifying which patients may benefit
most from specific treatments.

Research Designs in Predictive Scientific Tasks

The timing of the prediction fundamentally
determines the choice of study design in predictive
research. For diagnostic and screening models, where
the objective is to predict a present but not directly
observable condition, analytical cross-sectional studies

are the most appropriate design [32]. In these studies,
potential predictors and the outcome of interest are
measured simultaneously at a specific time. However,
there may be a short technical interval between
predictor measurement and diagnostic confirmation via
the gold standard. For example, in developing a model
for predicting acute appendicitis, data on symptoms,
signs, and laboratory tests would be collected
simultaneously ~ with  surgical or  pathological
confirmation of the diagnosis. However, cross-sectional
studies for diagnostic prediction have important
limitations. They cannot capture temporal changes in
clinical manifestations that might affect diagnostic
accuracy, potentially missing early disease markers or
dynamic progression patterns. Additionally, these
designs may not account for variations in test
performance across different disease stages. For
instance, in early cancer detection, diagnostic accuracy
often varies depending on tumor progression, a
limitation  that cross-sectional designs cannot
adequately address. These constraints highlight the
importance of complementary longitudinal validation
when developing diagnostic prediction tools.

Diagnostic prediction has diverse practical appli-
cations across clinical specialties. For instance, in
emergency medicine, models combining clinical symp-
toms, vital signs, and biomarkers help identify high-risk
sepsis patients requiring immediate intervention. In
oncology, diagnostic prediction models integrate
imaging features, molecular markers, and clinical data
to classify suspicious lesions, such as the BI-RADS
system for breast imaging or the Lung-RADS for
pulmonary nodules. These tools support standardized
risk assessment and guide clinical decision-making
regarding the need for invasive procedures

On the other hand, predictive models require cohort
studies, as their goal is to predict future events [33].
These longitudinal designs allow for a clear temporal
sequence between baseline predictor measurement
and the occurrence of the event of interest during
follow-up. A classic example is the development of
cardiovascular risk prediction models, where risk
factors are measured at baseline, and follow-up is
conducted to document cardiovascular events.
However, it is crucial to recognize that the validity of
these studies depends not only on the chosen design
but also on the quality of its implementation, including
sample representativeness, measurement standardiza-
tion, and appropriate handling of follow-up and attrition
[34].

Predictive Versus. Explanatory Scientific Task
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Observing how predictive models can reverse the
biological causal sequence is interesting, illustrating the
distinction between prediction and causation. A
paradigmatic example is the relationship between
jaundice and  gallbladder cancer. From a
pathophysiological and causal perspective, we know
that cancer causes jaundice through bile duct
obstruction. However, from diagnostic predictive
scientific tasks, jaundice becomes a valuable predictor
for detecting cancer, even though it is a late
manifestation of the disease [35]. This apparent
"reversal" of the temporal-causal relationship is seen in
many other clinical contexts: dyspnea is caused by
heart failure, but in predictive models, dyspnea helps
identify heart failure; a brain tumor causes a headache,
but predictively, headache helps to suspect and detect
cancer.

This fundamental distinction between prediction and
causation underscores why predictive models can and
should include variables that are consequences rather
than causes of the condition of interest if they improve
the model's predictive ability. This flexibility in predictor
selection, free from causal temporal constraints, is one
of the reasons predictive models can achieve high
diagnostic performance, even when including late
manifestations of the disease.

Statistical Analysis in Scientific Tasks

Predictive models are typically constructed using
various regression techniques, chosen based on the
nature of the outcome of interest. Logistic regression is
the most commonly used method for diagnostic
models, where the result is generally binary
(presence/absence of disease) [29]. For prognostic
models, where time to event is crucial, Cox regression
is the gold standard, allowing for the incorporation of
censoring and variable follow-up times. For example,
Cox models can integrate multiple prognostic variables
in cancer survival prediction while properly handling
incomplete follow-up for some patients [36].

However, these traditional models are increasingly
complemented or, in some cases, replaced by more
advanced techniques. Generalized additive models
allow for modeling nonlinear relationships between
predictors and outcomes. Machine learning techniques,
such as random forests, gradient boosting, or neural
networks, are gaining popularity, especially when large
datasets are available or when relationships between
variables are complex [37]. Nevertheless, as Wynants
et al. [6] note, the choice of statistical method should
be based not only on predictive performance but also

on practical considerations, such as model
interpretability and ease of implementation in clinical
practice.

Multivariable models address key limitations of
traditional single-variable approaches by capturing
complex interactions between predictors and
accounting for their relative contributions to risk
assessment. These models can better handle patient
heterogeneity and provide more nuanced risk
stratification than individual markers, leading to more
accurate and personalized predictions.

Additionally, traditional  predictive evaluation
concepts such as sensitivity, specificity, predictive
values, and likelihood ratios, though widely used, have
significant limitations highlighted by modern research.
The issue is that these indicators mistakenly assume
that the performance of a test is constant across all
patients when it varies based on individual patient
characteristics and clinical context [38]. For example,
the sensitivity and specificity of troponin for diagnosing
myocardial infarction vary according to patient age,
time since pain onset, and renal disease presence [39].
This reality has driven a paradigm shift toward
multivariable predictive models integrating multiple
predictors. This updated approach of using models
rather than individual variables allows for more
accurate and personalized prediction by considering
multiple patient characteristics simultaneously. For
instance, instead of relying solely on D-dimer for
diagnosing deep vein thrombosis, current models
combine this biomarker with clinical features, risk
factors, and other findings to provide more accurate
and personalized probability estimates. This shift from
fixed performance measures to dynamic predictive
models represents an essential evolution toward more
precise, patient-centered medicine.

Furthermore, model performance assessment
requires a multidimensional approach examining three
fundamental aspects: discrimination, calibration, and
overall clinical performance.

1. Discrimination assesses the model’s ability to
distinguish between individuals who will or will not
experience the event of interest. The C-statistic
(equivalent to the area under the ROC curve) is the
most common measure, where 0.5 indicates
random prediction and 1.0 indicates perfect
discrimination. However, as Steyerberg EW [29],
notes, discrimination alone is insufficient, as a
model may discriminate well but be poorly
calibrated.
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2. Calibration, often considered the "Achilles' heel" of
clinical prediction, evaluates the concordance bet-
ween predicted probabilities and observed event
frequencies. A well-calibrated model predicting a
20% risk should observe the event in approxi-
mately 20 out of every 100 patients with that
prediction. Calibration can be assessed using cali-
bration plots, Hosmer-Lemeshow tests (though
increasingly discouraged), and more modern mea-
sures such as calibration slope and intercept [40].

3. Overall Clinical Performance is evaluated using
measures such as net benefit and decision curves,
which consider the clinical impact of model-based
decisions. These measures are crucial because a
model may have excellent discrimination and
calibration but still be clinically useless if its
decision thresholds do not align with real-world
clinical practice [41]

EXPLANATORY STUDIES: THE OFTEN-UNSTATED
SEARCH FOR CAUSALITY

Research with explanatory scientific tasks seeks to
establish causal relationships between health
exposures and outcomes. Unlike descriptive and
predictive approaches, explanatory research aims to
answer the "why" behind health phenomena, aspiring
to understand the underlying mechanisms connecting
causes and effects. In clinical practice, this approach
often falls into two major areas: etiological research,
which aims to identify disease causes, and treatment
effect evaluation, which examines the causal impact of
therapeutic interventions [8,9].

Explanatory research employs various methodo-
logical approaches depending on the research question
and context. Randomized Controlled Trials (RCTs) are
considered the gold standard for causal inference due
to their ability to control for known and unknown
confounders through randomization. However, well-
designed observational studies, particularly prospective
cohort studies, can also provide strong causal evidence
when RCTs are not feasible or ethical. While less
robust for causal inference, case-control studies may
be valuable in rare outcomes or initial causal
exploration. Each design offers different strengths for
causal investigation: RCTs excel in establishing
treatment effects, cohort studies are particularly useful
for studying long-term exposures and multiple out-
comes. In contrast, case-control studies can efficiently
explore potential causal factors in rare diseases.

The distinction between etiology and treatment

effects is critical, as it implies different methodological
approaches and practical considerations. While
etiological studies often investigate nonmodifiable risk
factors or long-term exposures (such as the
relationship between smoking and lung cancer),
treatment effect studies focus on specific, modifiable
interventions (such as the efficacy of a new drug).
However, both share the fundamental goal of
establishing causal relationships that can inform clinical
practice and public health policies [8,9].

Reluctance to Discuss Causality

Explanatory scientific task represent a unique
paradigm where a peculiar dichotomy exists: while
most researchers implicitly seek to establish causal
relationships, there is widespread reluctance to state
these intentions explicitly [2,9]. More concerning is that
many researchers appear unaware that they are
conducting causal research, even though their methods
suggest it: they use directed acyclic graphs (DAGs),
adjust for confounders, and assess interactions and
mediation—all tools from the causal inference toolkit.
These disconnects between the methods employed
and the true research objective can lead to inadequate
interpretations and ambiguous conclusions. Unfortu-
nately, this lack of conceptual clarity affects research
quality and complicates the critical evaluation of gene-
rated evidence, as researchers conduct causal ana-
lyses without acknowledging or fully understanding it.

The reasons why most researchers avoid using the
term "causality" in their studies are varied. First, there
is a deeply ingrained caution around causal language,
so much so that some scientific journals explicitly
prohibit causal terminology in observational studies,
reserving it exclusively for RCTs [16,17]. However, this
stance can be counterproductive, as observational
designs, backed by strong arguments and
methodologies, can serve as the first step in causal
exploration, which may be unfeasible in experimental
studies for economic or ethical reasons. Thus, limiting
causality claims to RCTs would confine causal
understanding to studies using this design alone,
potentially excluding critical findings [8,9].

Another reason this conceptual confusion manifests
in practice is the selection of study design when deter-
mining relationships between variables. Researchers
frequently resort to cross-sectional designs, which,
while useful, have inherent limitations for causal infe-
rence, including the phenomenon known as "reverse
causation" [10]. Faced with these methodological
limitations, authors often take refuge in conservative
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terms like "association" or "risk," even when their true
objective is to explore causal relationships (especially
since, as noted initially, they use tools typically
associated with an explanatory scientific task).

For this reason, while many researchers may want
to avoid pursuing causality, two methodologically
coherent paths can be considered. The first is to
remain within the descriptive realm, refraining from
causal language and the tools specific to causal
inference. Alternatively, a second option is to openly
acknowledge the study's causal intentions, employing
appropriate  methodological tools while explicitly
discussing the design’s limitations for causal inference.
Though more challenging, this second scientific tasks
allows for a more transparent and critical evaluation of
the evidence generated [2,8].

Classification of the Explanatory Scientific Task

The explanatory approach can be approached from
two complementary perspectives, exploratory and
confirmatory, which reflect different stages in building
causal knowledge [42].

The exploratory scientific tasks represent an initial
investigation into potential causal relationships.
Researchers examine multiple possible relationships
without a strongly preconceived hypothesis in this
context, searching for patterns that suggest plausible
causal mechanisms. For example, studies that initially
identified the association between oral contraceptive
use and venous thromboembolism began as
exploratory investigations [43]. Although these studies
have inherent limitations due to their exploratory
nature, they are essential for developing new causal
hypotheses that warrant further research.

The exploratory scientific tasks typically rely more
on observational data, such as cohort or case-control
studies, where researchers can simultaneously examine
multiple potential causal relationships. In contrast, the
confirmatory approach often employs more structured
designs like randomized controlled trials or carefully
controlled observational studies with pre-specified
hypotheses and rigorous control of potential
confounders. This progression from observational
exploration to controlled confirmation reflects the
natural maturation of causal evidence. For example,
the investigation of smoking's health effects began with
observational studies exploring multiple potential
outcomes before moving to more focused controlled
studies examining specific causal mechanisms.

On the other hand, the confirmatory approach
represents a more mature stage in causal research,
where the goal is to verify specific, previously
formulated causal hypotheses. These studies are
characterized by pre-specified hypotheses, clearly
defined assessment criteria, and methods to control
known confounding factors. A classic example would
be a study specifically designed to confirm the causal
role of HPV in cervical cancer, with precise
measurements of exposure, control of known
confounders, and an appropriate timeframe [44].

However, as Greenland warns [45], the distinction
between these approaches is not always clear in
practice. Many studies combine exploratory and
confirmatory elements, and the current trend is to
acknowledge this duality rather than enforce a
dichotomous classification. Thus, it is essential to
highlight that the path from exploration to causal
confirmation typically follows natural progression in
biomedical research. In the initial stages, the approach
tends to be exploratory when using classical
epidemiological designs such as cross-sectional or
case-control studies (as discussed below) and
recognizing their inherent limitations. Although these
studies cannot establish definitive causality, they are
fundamental in generating hypotheses and indicating
promising directions for research. On the other hand,
when a solid theory is supported by preliminary
evidence and more robust designs such as RCTs or
observational studies with advanced causal inference
methods (such as instrumental variables or sensitivity
analyses) are employed, we can speak of a
confirmatory approach. This natural progression from
exploration to confirmation reflects the maturation of
scientific knowledge and the gradual accumulation of
causal evidence.

Research Designs with a Explanatory Scientific
Task

Causal-focused studies can be implemented
through various research designs, both observational
and experimental. Among observational designs,
cross-sectional studies, although widely used for their
efficiency and feasibility, have significant limitations for
causal inference due to the inability to establish
temporality between exposure and outcome. Therefore,
they can be useful in initiating the search for potential
etiological factors, albeit with noted limitations. Case-
control studies can go a bit further and are especially
useful for studying rare events and more resource-
efficient [10].
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Cohort studies, on the other hand, represent one of
the most robust observational designs for causal
inference, as they establish temporality and allow for
the evaluation of multiple outcomes. A paradigmatic
example is the study of the causal relationship between
smoking and lung cancer, where observational evidence
was so convincing that it established causality without
the need for RCTs. This case illustrates how well-
designed observational studies can provide solid
causal evidence, especially when findings are
consistent across multiple studies and populations [46].

RCTs are considered the gold standard for causal
inference due to their ability to control known and
unknown confounding factors through randomization.
However, they also present limitations: they are costly,
may face external validity issues, and are often
unethical or infeasible. Additionally, randomization
alone does not guarantee the absence of other biases,
such as loss to follow-up or non-compliance with the
assigned treatment [8].

It is important to recognize that each design has
strengths and weaknesses for causal inference. The
design should be based on methodological
considerations and practical, ethical, and study-specific
aspects. The strongest evidence often emerges from
triangulating results from different study designs [47].

Classical Statistical Analyses Used in Explanatory
Scientific Tasks

Choosing effect measures is crucial for correctly
interpreting results in causally focused studies. Relative
Risk (RR) is one of the most intuitive and directly
interpretable measures, representing how many times
more likely the event is to occur in the exposed group
compared to the non-exposed group. Hazard Ratios
(HR) are especially useful in longitudinal studies where
time to event is important, allowing for the incorporation
of censored data and variable follow-up times [10].

The Odds Ratio (OR) is often used, particularly in
case-control studies, although its interpretation requires
caution. While OR approximates RR when the event is
rare (less than 10%), it may overestimate the associa-
tion when the event is common. In a causal context, it
is essential to remember that these association
measures can only be interpreted as causal effects
when the fundamental assumptions of consistency,
exchangeability, and positivity are met [10].

Absolute effect measures, such as Risk Difference
and Number Needed to Treat (NNT), are particularly

valuable for public health decision-making and clinical
practice. NNT, which indicates how many individuals
need to be treated to prevent an additional event,
provides a more tangible measure of an intervention’s
impact. However, it is important to consider that NNT
can vary significantly depending on the baseline risk of
the studied population [10].

While these traditional effect measures have proven
useful in clinical fields, advances in epidemiological
methodology have opened new horizons in explanatory
approaches. Advances in causal inference theory have
provided more sophisticated tools for rigorously
analyzing cause-effect relationships, representing
technical advancement and a fundamental shift in our
understanding of causality in epidemiology, as
discussed below.

Modern Assumptions in Explanatory Scientific
Tasks

In recent decades, traditional epidemiological
research approaches have been complemented by
more rigorous causal frameworks to strengthen the
validity of causal inferences. This evolution has led to
the development of fundamental assumptions that must
be met for valid causal effect estimation, providing a
more solid conceptual framework to evaluate our
conclusions [8].

In modern causal inference, three assumptions go
beyond the classical Bradford Hill criteria: consistency,
exchangeability, and positivity. Consistency establishes
that the observed outcome under a specific treatment
should correspond to the potential outcome under that
same treatment, a crucial concept for linking observed
outcomes with counterfactuals. Exchangeability,
modernizing the traditional idea of confounding, implies
that comparison groups are similar in all relevant
aspects except for the exposure of interest. Positivity
requires that each individual has a non-zero probability
of receiving any treatment level, a rarely considered
assumption in traditional approaches [48].

In addition to these fundamental assumptions, the
modern approach incorporates new methodological
tools such as advanced statistical methods like the g-
formula and inverse probability weighting. These
methods enable the estimation of different types of
causal effects, both at the individual and population
levels, including the average treatment effect (ATE),
effect among treated individuals (ATT), and controlled
and natural causal effects in mediation analyses [47].
Additionally, in this context, these traditional estimators
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are complemented by more sophisticated methods
such as standardization, inverse probability weighting
(IPTW), and G-methods, which allow for better control
of confounding and more precise causal -effect
estimation in the presence of time-dependent
confounders or mediation [47].

The validity of these assumptions must be carefully
evaluated in each research context. While some
assumptions are met by design in RCTs, observational
studies require more detailed consideration and
possibly  additional methodological adjustments.
However, RCTs also face important challenges in
meeting causal assumptions. Treatment non-
compliance can violate consistency assumptions,
differential loss to follow-up may compromise
exchangeability, and strict inclusion/exclusion criteria
can affect positivity. Additionally, protocol deviations,
crossover effects, and missing data can threaten the
validity of causal estimates even in randomized
designs. Understanding these limitations is crucial for
proper causal inference in experimental studies [49].

An Additional Challenge in Explanatory Scientific
Tasks: Manipulable vs. Non-manipulable Variables

The distinction between manipulable and non-
manipulable variables is fundamental in causal
inference, as it directly impacts how we study and
understand causal relationships. Manipulable variables
can be directly controlled or modified in a study (e.g.,
administering a medication). In contrast, non-
manipulable variables are characteristics or states that
cannot be randomly assigned (e.g., obesity, gender, or
age) [8].

Non-manipulable variables challenge causal
inference because they cannot be directly controlled or
assigned in a study. Obesity perfectly illustrates this
complexity: while we can observe different Body Mass
Index (BMI) levels in a population, we cannot "assign"
people to be obese or non-obese as we would with a
traditional medical intervention [8].

To understand this better, consider the following
example: imagine conducting three hypothetical RCTs

Table 2: Biomedical Research Scientific Tasks: Comparison of Descriptive, Predictive, and Explanatory

Characteristic Descriptive

Predictive Explanatory

Characterize patterns, distributions,

Main objective and trends

Anticipate future outcomes or identify
current conditions

Establish causal relationships

What is happening?
How is it distributed?
Where and when does it occur?

Key questions

What is the probability of occurrence?
Who is at risk?

Why does it occur?
What causes it?

- Diabetes prevalence by region
- COVID-19 temporal trends

- 10-year cardiovascular risk
- Sepsis prediction

- Effect of statins on mortality
- Causality between smoking and

- Highlight disparities
- Do not infer causation

considerations

- Calibration
- Periodic updates

Examples - Characterization of health inequities - Venous thrombosis diagnosis cancer
- Molecular distribution of breast - Predictors of colorectal cancer - Impact of health interventions
cancer by subtypes recurrence
- Frequency measures - Predictive regression models - Causal analysis
Typical - Trend analysis - Machine learning - Directed Acyclic Graphs (DAGs)
methods - Data visualization - Validation and calibration - Confounder adjustment
- Descriptive statistics - Predictive performance metrics - Mediation analysis
- Cross-sectional studies - Cohort studies - Clinical trials
Common . . . . .
designs - Case series - Analytical cross-sectional studies - Cohort studies
- Ecological studies - Diagnostic studies - Case-control studies
- Avoid unnecessary adjustments - External validation - Confounding control
Special

- Temporality
- Causal assumptions

- Health planning

- Clinical decision-making

- Therapeutic interventions

- Possible ecological fallacy

- Data quality dependent

Prl.mar.y - Trend monitoring - Risk stratification - Health policy
application
- Problem identification - Early diagnosis - Prevention
. . . . L - Causation difficult to establish
- Does not establish causation - Requires ongoing validation . )
. . T - Residual confounding
Limitations - Does not predict future outcomes - May lack generalizability

- Selection bias
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to reduce BMI—one based on intensive exercise,
another on a restrictive dietary intervention, and a third
combining moderate exercise and diet. Although all
three studies achieved the same reduction in BMI,
each showed different effects on mortality. This occurs
because each weight reduction method can have direct
health effects beyond those mediated solely through
BMI change [50]. This leads us to an important
conclusion: when studying the "effect of obesity," we
investigate the effects of different mechanisms and
interventions that lead to a particular BMI. Therefore, it
is not obesity that we can manipulate but interventions
that lead to body weight changes. This has crucial
implications for research and public health policy,
suggesting that we should focus on studying the effects
of specific, well-defined interventions rather than trying
to estimate the general effect of obesity [50].

Conclusions, Challenges, and Perspectives in
Scientific Task-Oriented Approaches

Classifying biomedical research into descriptive,
predictive, and explanatory scientific tasks represents a
significant advancement over the traditional
descriptive-analytical dichotomy. However, each
approach faces challenges that merit attention. In
research with descriptive scientific tasks, the primary
challenge lies in avoiding unnecessary adjustments
that could obscure important disparities, especially
when the goal is to highlight health inequities. In
research with predictive scientific tasks, the challenge
lies in continuously validating and updating models
across different populations and effectively integrating
these tools into clinical practice. In research with
explanatory scientific tasks, the tension persists
between the need to establish causality, the inherent
limitations of observational designs, and the historical
reluctance to declare causal objectives explicitly.

All three approaches share the common challenge
of methodological transparency. Researchers must be
clear about their objectives and methods, recognizing
that each scientific task requires different analytical
techniques. For example, a cohort study can be used
for descriptive, predictive, or explanatory purposes, but
the analysis methods and interpretation of results will
differ substantially depending on the primary objective.

In the current context of evidence-based health
application, it is crucial to recognize that these
approaches are not mutually exclusive but
complementary. Descriptive scientific tasks can
generate hypotheses later evaluated in explanatory
scientific tasks, while findings from predictive studies

can inform the description of phenomena and the
investigation of causal mechanisms. This
interrelationship  underscores the importance of
maintaining methodological rigor specific to each
approach.

Looking ahead, advances in statistical methodology
and the availability of large databases are likely to
continue expanding the possibilities of each approach.
However, the key to success will remain the proper
alignment between research objectives and the
methods employed. Researchers should resist the
temptation to make inferences beyond the scope of
their study design, whether attempting to establish
causality from purely descriptive scientific tasks or
extrapolating predictions beyond the populations in
which the models were developed.

The scientific community should work towards
developing specific methodological guidelines for each
scientific task, recognizing their unique requirements
and particularities. This will facilitate the planning and
evaluation of biomedical research, contributing to more
transparent and reproducible science. The goal is to
generate evidence that is methodologically sound and
useful for decision-making in public health and clinical
practice.
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