Sigma Antagonists for Treatment of Neuropathic Pain Syndromes in Cancer Patients: A Narrative Review


  • Joseph V. Pergolizzi, Jr. NEMA Research Inc., Naples, Florida, USA
  • Jo Ann LeQuang NEMA Research Inc., Naples, Florida, USA



Cancer-related neuropathic pain, chemotherapy-induced peripheral neuropathy, sigma 1 receptor, sigma 2 receptor, sigma receptor


Almost 40% of cancer patients have neuropathic pain or mixed pain with a neuropathic component, which can be intense, debilitating, and challenging to treat. New studies on sigma receptors show these enigmatic ligand-binding protein chaperones may be helpful drug targets for new pharmacologic options to reduce many types of neuropathies, including chemotherapy-induced peripheral neuropathy (CIPN) and other cancer-related neuropathic pain syndromes. Our objective was to review the literature, including preclinical findings, in support of sigma-1 receptor (S1R) antagonists in reducing neuropathic pain and sigma-2 receptor (S2R) agonists for neuroprotection. The mechanisms behind these effects are not yet fully elucidated. The role of S1R antagonists in treating CIPN appears promising. In some cases, combination therapy of an opioid—which is a true analgesic—with a S1R antagonist, which is an anti-hyperalgesic and anti-allodynic agent, has been proposed. Of interest, but not well studied is whether or not S1R antagonists might be effective in treating CIPN in patients with pre-existing peripheral diabetic neuropathy. While neuropathic syndromes may occur with hematologic cancers, the role of S1R agonists may be effective. Sigma receptors are being actively studied now for a variety of conditions ranging from Alzheimer’s disease to Parkinson’s disease as well as neuropathic pain.


Yoon SY, Oh J. Neuropathic cancer pain: prevalence, pathophysiology, and management. Korean J Intern Med 2018; 33(6): 1058-69. DOI:

Bennett MI, Rayment C, Hjermstad M, Aass N, Caraceni A, Kaasa S. Prevalence and aetiology of neuropathic pain in cancer patients: a systematic review. Pain 2012; 153(2): 359-65. DOI:

Maurice T, Su TP. The pharmacology of sigma-1 receptors. Pharmacol Ther 2009; 124(2): 195-206. DOI:

Hayashi T, Su TP. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 2007; 131(3): 596-610. DOI:

Hayashi T, Su T. The sigma receptor: evolution of the concept in neuropsychopharmacology. Curr Neuropharmacol 2005; 3(4): 267-80. DOI:

Albayrak Y, Hashimoto K. Sigma-1 Receptor Agonists and Their Clinical Implications in Neuropsychiatric Disorders. Adv Exp Med Biol 2017; 964: 153-61. DOI:

Soriani O, Rapetti-Mauss R. Sigma 1 Receptor and Ion Channel Dynamics in Cancer. Adv Exp Med Biol 2017; 964: 63-77. DOI:

Sanchez-Fernandez C, Entrena JM, Baeyens JM, Cobos EJ. Sigma-1 Receptor Antagonists: A New Class of Neuromodulatory Analgesics. In: Smith SB, Su TP, editors. Sigma Receptors: Their Role in Disease and as Therapeutic Targets. Advances in Experimental Medicine and Biology 2017; 964: p. 109-32. DOI:

Cuevas J, Rodriguez A, Behensky A, Katnik C. Afobazole modulates microglial function via activation of both sigma-1 and sigma-2 receptors. J Pharmacol Exp Ther 2011; 339(1): 161-72. DOI:

Merlos M, Burgueño J, Portillo-Salido E, Plata-Salamán CR, Vela JM. Pharmacological Modulation of the Sigma 1 Receptor and the Treatment of Pain. Adv Exp Med Biol 2017; 964: 85-107. DOI:

Song T, Zhao J, Ma X, Zhang Z, Jiang B, Yang Y. Role of sigma 1 receptor in high fat diet-induced peripheral neuropathy. Biol Chem 2017; 398(10): 1141-9. DOI:

Bangaru ML, Weihrauch D, Tang Q-B, Zoga V, Hogan Q, Wu H-e. Sigma-1 receptor expression in sensory neurons and the effect of painful peripheral nerve injury. Molecular Pain 2013; 9(1): 47. DOI:

Bruna J, Velasco R. Sigma-1 receptor: a new player in neuroprotection against chemotherapy-induced peripheral neuropathy. Neural Regen Res 2018; 13(5): 775-8. DOI:

Su TP, Su TC, Nakamura Y, Tsai SY. The Sigma-1 Receptor as a Pluripotent Modulator in Living Systems. Trends Pharmacol Sci 2016; 37(4): 262-78. DOI:

Zhang Y, Shi Y, Qiao L, Sun Y, Ding W, Zhang H, et al. Sigma-1 receptor agonists provide neuroprotection against gp120 via a change in bcl-2 expression in mouse neuronal cultures. Brain Res 2012; 1431: 13-22. DOI:

Tan F, Guio-Aguilar PL, Downes C, Zhang M, O'Donovan L, Callaway JK, et al. The σ 1 receptor agonist 4-PPBP elicits ERK1/2 phosphorylation in primary neurons: a possible mechanism of neuroprotective action. Neuropharmacology 2010; 59(6): 416-24. DOI:

Saulite L, Vavers E, Zvejniece L, Dambrova M, Riekstina U. The Differentiation of Skin Mesenchymal Stem Cells Towards a Schwann Cell Phenotype: Impact of Sigma-1 Receptor Activation. Mol Neurobiol 2018; 55(4): 2840-50. DOI:

Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, et al. Neuropathic pain. Nat Rev Dis Primers 2017; 3: 17002. DOI:

Rayment C, Hjermstad MJ, Aass N, Kaasa S, Caraceni A, Strasser F, et al. Neuropathic cancer pain: prevalence, severity, analgesics and impact from the European Palliative Care Research Collaborative-Computerised Symptom Assessment study. Palliat Med 2013; 27(8): 714-21. DOI:

Bravo-Caparrós I, Ruiz-Cantero MC, Perazzoli G, Cronin SJF, Vela JM, Hamed MF, et al. Sigma-1 receptors control neuropathic pain and macrophage infiltration into the dorsal root ganglion after peripheral nerve injury. Faseb j 2020; 34(4): 5951-66. DOI:

Johnson IP, Sears TA. Target-dependence of sensory neurons: an ultrastructural comparison of axotomised dorsal root ganglion neurons with allowed or denied reinnervation of peripheral targets. Neuroscience 2013; 228: 163-78. DOI:

Laedermann CJ, Pertin M, Suter MR, Decosterd I. Voltage-gated sodium channel expression in mouse DRG after SNI leads to re-evaluation of projections of injured fibers. Mol Pain 2014; 10: 19. DOI:

Ji RR, Chamessian A, Zhang YQ. Pain regulation by non-neuronal cells and inflammation. Science 2016; 354(6312): 572-7. DOI:

Sánchez-Fernández C, Montilla-García Á, González-Cano R, Nieto FR, Romero L, Artacho-Cordón A, et al. Modulation of peripheral μ-opioid analgesia by σ1 receptors. J Pharmacol Exp Ther 2014; 348(1): 32-45. DOI:

Nascimento D, Pozza DH, Castro-Lopes JM, Neto FL. Neuronal injury marker ATF-3 is induced in primary afferent neurons of monoarthritic rats. Neurosignals 2011; 19(4): 210-21. DOI:

Tomohisa M, Junpei O, Aki M, Masato H, Mika F, Kazumi Y, et al. Possible involvement of the Sigma-1 receptor chaperone in chemotherapeutic-induced neuropathic pain. Synapse 2015; 69(11): 526-32. DOI:

Gris G, Cobos EJ, Zamanillo D, Portillo-Salido E. Sigma-1 receptor and inflammatory pain. Inflamm Res 2015; 64(6): 377-81. DOI:

Edwards HL, Mulvey MR, Bennett MI. Cancer-Related Neuropathic Pain. Cancers (Basel) 2019; 11(3). DOI:

van den Beuken-van Everdingen MHJ, van Kuijk SMJ, Janssen DJA, Joosten EAJ. Treatment of Pain in Cancer: Towards Personalised Medicine. Cancers (Basel) 2018; 10(12). DOI:

Gwathmey KG. Plexus and peripheral nerve metastasis. Handb Clin Neurol 2018; 149: 257-79. DOI:

Patel DK, Gwathmey KG. Neoplastic nerve lesions. Neurol Sci 2022; 43(5): 3019-38. DOI:

Zajączkowska R, Kocot-Kępska M, Leppert W, Wrzosek A, Mika J, Wordliczek J. Mechanisms of Chemotherapy-Induced Peripheral Neuropathy. Int J Mol Sci 2019; 20(6). DOI:

Staff NP, Grisold A, Grisold W, Windebank AJ. Chemotherapy-induced peripheral neuropathy: A current review. Ann Neurol 2017; 81(6): 772-81. DOI:

Cioroiu C, Weimer LH. Update on Chemotherapy-Induced Peripheral Neuropathy. Curr Neurol Neurosci Rep 2017; 17(6): 47. DOI:

Chua KC, Kroetz DL. Genetic advances uncover mechanisms of chemotherapy-induced peripheral neuropathy. Clin Pharmacol Ther 2017; 101(4): 450-2. DOI:

Nakagawa T, Kaneko S. Roles of Transient Receptor Potential Ankyrin 1 in Oxaliplatin-Induced Peripheral Neuropathy. Biol Pharm Bull 2017; 40(7): 947-53. DOI:

Marcotti A, Fernández-Trillo J, González A, Vizcaíno-Escoto M, Ros-Arlanzón P, Romero L, et al. TRPA1 modulation by Sigma-1 receptor prevents oxaliplatin-induced painful peripheral neuropathy. Brain 2022. DOI:

Nieto FR, Cendán CM, Sánchez-Fernández C, Cobos EJ, Entrena JM, Tejada MA, et al. Role of sigma-1 receptors in paclitaxel-induced neuropathic pain in mice. J Pain 2012; 13(11): 1107-21. DOI:

Nieto FR, Cendán CM, Cañizares FJ, Cubero MA, Vela JM, Fernández-Segura E, et al. Genetic inactivation and pharmacological blockade of sigma-1 receptors prevent paclitaxel-induced sensory-nerve mitochondrial abnormalities and neuropathic pain in mice. Mol Pain 2014; 10: 11. DOI:

Grothey A. Oxaliplatin-safety profile: neurotoxicity. Semin Oncol 2003; 30(4 Suppl 15): 5-13. DOI:

Dorsey SG. Selective Blockade of the Sigma 1 Receptor Has Beneficial Effects on Both Acute and Chronic Oxaliplatin-Induced Peripheral Neuropathy. Neurotherapeutics 2018; 15(1): 176-7. DOI:

Bruna J, Videla S, Argyriou AA, Velasco R, Villoria J, Santos C, et al. Efficacy of a Novel Sigma-1 Receptor Antagonist for Oxaliplatin-Induced Neuropathy: A Randomized, Double-Blind, Placebo-Controlled Phase IIa Clinical Trial. Neurotherapeutics 2018; 15(1): 178-89. DOI:

Zoccarato M, Grisold W, Grisold A, Poretto V, Boso F, Giometto B. Paraneoplastic Neuropathies: What's New Since the 2004 Recommended Diagnostic Criteria. Front Neurol 2021; 12: 706169. DOI:

Lever JR, Fergason-Cantrell EA. Allosteric modulation of sigma receptors by BH3 mimetics ABT-737, ABT-263 (Navitoclax) and ABT-199 (Venetoclax). Pharmacological Research 2019; 142: 87-100. DOI:

Meunier J, Hayashi T. Sigma-1 receptors regulate Bcl-2 expression by reactive oxygen species-dependent transcriptional regulation of nuclear factor kappaB. J Pharmacol Exp Ther 2010; 332(2): 388-97. DOI:

Li T, Timmins HC, Lazarus HM, Park SB. Peripheral neuropathy in hematologic malignancies - Past, present and future. Blood Rev 2020; 43: 100653. DOI:

Yagihashi S, Mizukami H, Sugimoto K. Mechanism of diabetic neuropathy: Where are we now and where to go? J Diabetes Investig 2011; 2(1): 18-32. DOI:

Sempere-Bigorra M, Julián-Rochina I, Cauli O. Chemotherapy-Induced Neuropathy and Diabetes: A Scoping Review. Curr Oncol 2021; 28(4): 3124-38. DOI:

Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes and cancer: a consensus report. Diabetes Care 2010; 33(7): 1674-85. DOI:

Dale R, Stacey B. Multimodal Treatment of Chronic Pain. Med Clin North Am 2016; 100(1): 55-64. DOI:

Davis MP. Sigma-1 receptors and animal studies centered on pain and analgesia. Expert Opin Drug Discov 2015; 10(8): 885-900. DOI:

Zhuang T, Xiong J, Hao S, Du W, Liu Z, Liu B, et al. Bifunctional μ opioid and σ(1) receptor ligands as novel analgesics with reduced side effects. Eur J Med Chem 2021; 223: 113658. DOI:

Chien C, Pasternak G. Functional antagonism of morphine analgesia by (+)-pentazocine: evidence for an anti-opioid sigma1 system. Eur J Pharmacology 1993; 250(1): R7-R8. DOI:

Romero L, Merlos M, Vela JM. Antinociception by Sigma-1 Receptor Antagonists: Central and Peripheral Effects. Adv Pharmacol 2016; 75: 179-215. DOI:

Mei J, Pasternak GW. Sigma1 receptor modulation of opioid analgesia in the mouse. J Pharmacol Exp Ther 2002; 300(3): 1070-4. DOI:

Vidal-Torres A, de la Puente B, Rocasalbas M, Touriño C, Andreea Bura S, Fernández-Pastor B, et al. Sigma-1 receptor antagonism as opioid adjuvant strategy: Enhancement of opioid antinociception without increasing adverse effects. European Journal of Pharmacology 2013; 711(1-3): p63-72 2013. DOI:

Intagliata S, Sharma A, King TI, Mesangeau C, Seminerio M, Chin FT, et al. Discovery of a Highly Selective Sigma-2 Receptor Ligand, 1-(4-(6,7-Dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-3-methyl-1H-benzo[d]imidazol-2(3H)-one (CM398), with Drug-Like Properties and Antinociceptive Effects In vivo. Aaps j 2020; 22(5): 94. DOI:

Wilson LL, Alleyne AR, Eans SO, Cirino TJ, Stacy HM, Mottinelli M, et al. Characterization of CM-398, a Novel Selective Sigma-2 Receptor Ligand, as a Potential Therapeutic for Neuropathic Pain. Molecules 2022; 27(11). DOI:

Hornick JR, Xu J, Vangveravong S, Tu Z, Mitchem JB, Spitzer D, et al. The novel sigma-2 receptor ligand SW43 stabilizes pancreas cancer progression in combination with gemcitabine. Mol Cancer 2010; 9: 298. DOI:

Ryskamp DA, Korban S, Zhemkov V, Kraskovskaya N, Bezprozvanny I. Neuronal Sigma-1 Receptors: Signaling Functions and Protective Roles in Neurodegenerative Diseases. Front Neurosci 2019; 13: 862. DOI:

Seretny M, Currie GL, Sena ES, Ramnarine S, Grant R, MacLeod MR, et al. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain 2014; 155(12): 2461-70. DOI:

Baig AM. Neurological manifestations in COVID-19 caused by SARS-CoV-2. CNS Neurosci Ther 2020; 26(5): 499-501. DOI:

Ashton H. Protracted withdrawal syndromes from benzodiazepines. J Subst Abuse Treat 1991; 8(1-2): 19-28. DOI:




How to Cite

Pergolizzi, Jr., J. V. ., & LeQuang, J. A. . (2022). Sigma Antagonists for Treatment of Neuropathic Pain Syndromes in Cancer Patients: A Narrative Review. Journal of Cancer Research Updates, 11, 70–77.