Scientific Tasks in Biomedical and Oncological Research: Describing, Predicting, and Explaining

Authors

  • Víctor Juan Vera-Ponce Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú and Facultad de Medicina (FAMED), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú
  • Fiorella E. Zuzunaga-Montoya Universidad Continental, Lima, Perú
  • Luisa Erika Milagros Vásquez-Romer Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú
  • Nataly Mayely Sanchez-Tamay Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú and Facultad de Medicina (FAMED), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú https://orcid.org/0009-0003-5951-4196
  • Joan A. Loayza-Castro Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú
  • Carmen Inés Gutierrez De Carrillo Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú and Facultad de Medicina (FAMED), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Perú https://orcid.org/0000-0002-4711-7201

DOI:

https://doi.org/10.30683/1929-2279.2024.13.08

Keywords:

Biomedical Research, Causality, Forecasting, Biostatistics, Epidemiology, Research Design (source: Mesh)

Abstract

The traditional classification of studies as descriptive and analytical has proven insufficient to capture the complexity of modern biomedical research, including oncology. This article proposes classification based on scientific tasks that distinguish three main categories: descriptive, predictive, and explanatory. The descriptive scientific task seeks to characterize patterns, distributions, and trends in health, serving as a foundation for highlighting disparities and inequities. The predictive scientific task focuses on anticipating future outcomes or identifying conditions, distinguishing between diagnostic (current) and prognostic (future) predictions, and employing multivariable models beyond traditional metrics like sensitivity and specificity. The explanatory scientific task aims to establish causal relationships, whether in etiological studies or treatment effect studies, which can be exploration or confirmatory, depending on the maturity of the causal hypothesis.

Differentiating these scientific tasks is crucial because it determines the appropriate analysis and result interpretation methods. While research with descriptive scientific tasks should avoid unnecessary adjustments that may mask disparities, research with predictive scientific tasks requires rigorous validation and calibration, and study with explanatory scientific tasks must explicitly address causal assumptions. Each scientific task uniquely contributes to knowledge generation: descriptive scientific tasks inform health planning, predictive scientific tasks guide clinical decisions, and explanatory scientific tasks underpin interventions. This classification provides a coherent framework for aligning research objectives with suitable methods, enhancing the quality and utility of biomedical research.

References

Grimes DA, Schulz KF. Descriptive studies: what they can and cannot do. Lancet 2002; 359(9301): 145-9. https://doi.org/10.1016/S0140-6736(02)07373-7

Hernán MA, Hsu J, Healy B. A Second Chance to Get Causal Inference Right: A Classification of Data Science Tasks. CHANCE 2019; 32(1): 42-9. https://doi.org/10.1080/09332480.2019.1579578

Modern Epidemiology [Internet]. [citado el 21 de octubre de 2024]. Disponible en: https://www.wolterskluwer.com/en/

solutions/ovid/modern-epidemiology-4634

Shmueli G. To Explain or to Predict? Statist Sci [Internet] 2010 [citado el 26 de octubre de 2024]; 25(3). https://doi.org/10.1214/10-STS330

Breiman L. Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author). Statist Sci [Internet] 2001 [citado el 26 de octubre de 2024]; 16(3). https://doi.org/10.1214/ss/1009213726

Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ 2020; 369: m1328. https://doi.org/10.1136/bmj.m1328

Van Calster B, McLernon DJ, van Smeden M, Wynants L, Steyerberg EW, Bossuyt P, et al. Calibration: the Achilles heel of predictive analytics. BMC Medicine 2019; 17(1): 230. https://doi.org/10.1186/s12916-019-1466-7

Hernan MA, Robins JM. Causal Inference: What If. CRC Press; 2024. 312 p.

Huitfeldt A. Is caviar a risk factor for being a millionaire? BMJ 2016; 355: i6536. https://doi.org/10.1136/bmj.i6536

Rothman KJ. Modern Epidemiology. 4th ed. Wolters Kluwer, 2021.

Leenen RCA, Venderbos LDF, Helleman J, Gómez Rivas J, Vynckier P, Annemans L, et al. Prostate Cancer Early Detection in the European Union and UK. European Urology [Internet] 2024 [citado el 9 de noviembre de 2024]; https://doi.org/10.1016/j.eururo.2024.07.019

Suckow BD, Newhall KA, Bekelis K, Faerber AE, Gottlieb DJ, Skinner JS, et al. Hemoglobin A1c Testing and Amputation Rates in Black, Hispanic, and White Medicare Patients. Ann Vasc Surg 2016; 36: 208-17. https://doi.org/10.1016/j.avsg.2016.03.035

Long GV, Grob J-J, Nathan P, Ribas A, Robert C, Schadendorf D, et al. Factors predictive of response, disease progression, and overall survival after dabrafenib and trametinib combination treatment: a pooled analysis of individual patient data from randomised trials. Lancet Oncol 2016; 17(12): 1743-54. https://doi.org/10.1016/S1470-2045(16)30578-2

Leonetti A, Sharma S, Minari R, Perego P, Giovannetti E, Tiseo M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer 2019; 121(9): 725-37. https://doi.org/10.1038/s41416-019-0573-8

Singh GK, Jemal A. Socioeconomic and Racial/Ethnic Disparities in Cancer Mortality, Incidence, and Survival in the United States, 1950-2014: Over Six Decades of Changing Patterns and Widening Inequalities. J Environ Public Health 2017; 2017: 2819372. https://doi.org/10.1155/2017/2819372

Haber NA, Wieten SE, Rohrer JM, Arah OA, Tennant PWG, Stuart EA, et al. Causal and Associational Language in Observational Health Research: A Systematic Evaluation. Am J Epidemiol 2022; 191(12): 2084-97. https://doi.org/10.1093/aje/kwac137

Hernán MA. The C-Word: Scientific Euphemisms Do Not Improve Causal Inference From Observational Data. American Journal of Public Health 2018; 108(5): 616. https://doi.org/10.2105/AJPH.2018.304337

Vickers AJ, Assel M, Dunn RL, Zabor EC, Kattan MW, van Smeden M, et al. Guidelines for Reporting Observational Research in Urology: The Importance of Clear Reference to Causality. Urology 2023; 177: 1-5. https://doi.org/10.1016/j.urology.2023.04.007

Ellenberg JH. Selection bias in observational and experimental studies. Stat Med 1994; 13(5-7): 557-67. https://doi.org/10.1002/sim.4780130518

Fox MP, Murray EJ, Lesko CR, Sealy-Jefferson S. On the Need to Revitalize Descriptive Epidemiology. Am J Epidemiol 2022; 191(7): 1174-9. https://doi.org/10.1093/aje/kwac056

Bhopal RS. Concepts of Epidemiology: Integrating the ideas, theories, principles, and methods of epidemiology. Third Edition, Third Edition. Oxford, New York: Oxford University Press; 2016. 480 p.

Conroy S, Murray EJ. Let the question determine the methods: descriptive epidemiology done right. Br J Cancer 2020; 123(9): 1351-2. https://doi.org/10.1038/s41416-020-1019-z

Lesko CR, Zalla LC. Rigorous Descriptive Epidemiology for Health Justice. Epidemiology 2023; 34(6): 838-40. https://doi.org/10.1097/EDE.0000000000001658

Tordoff DM, Fernandez A, Perry NL, Heberling WB, Minalga B, Khosropour CM, et al. A Quantitative Intersectionality Analysis of HIV/STI Prevention and Healthcare Access Among Transgender and Nonbinary People. Epidemiology 2023; 34(6): 827-37. https://doi.org/10.1097/EDE.0000000000001669

Global Burden of Disease (GBD) [Internet]. [citado el 26 de octubre de 2024]. Disponible en: https://www.healthdata.org/

research-analysis/gbd

Braveman PA, Kumanyika S, Fielding J, LaVeist T, Borrell LN, Manderscheid R, et al. Health Disparities and Health Equity: The Issue Is Justice. American Journal of Public Health 2011; 101(Suppl 1): S149. https://doi.org/10.2105/AJPH.2010.300062

VanderWeele TJ, Robinson WR. On causal interpretation of race in regressions adjusting for confounding and mediating variables. Epidemiology (Cambridge, Mass) 2014; 25(4): 473. https://doi.org/10.1097/EDE.0000000000000105

Hernán MA, Hernández-Díaz S, Werler MM, Mitchell AA. Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am J Epidemiol 2002; 155(2): 176-84. https://doi.org/10.1093/aje/155.2.176

Steyerberg EW. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating [Internet]. Cham: Springer International Publishing; 2019 [citado el 26 de octubre de 2024]. (Statistics for Biology and Health). https://doi.org/10.1007/978-3-030-16399-0

D’Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 2008; 117(6): 743-53. https://doi.org/10.1161/CIRCULATIONAHA.107.699579

The PROGRESS framework [Internet]. Prognosis Research. [citado el 26 de octubre de 2024]. Disponible en: https://www.prognosisresearch.com/progress-framework

Knottnerus JA, Muris JW. Assessment of the accuracy of diagnostic tests: the cross-sectional study. J Clin Epidemiol 2003; 56(11): 1118-28. https://doi.org/10.1016/s0895-4356(03)00206-3

Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. BMC Medicine 2015; 13(1): 1. https://doi.org/10.1186/s12916-014-0241-z

Riley RD, Ensor J, Snell KIE, Harrell FE, Martin GP, Reitsma JB, et al. Calculating the sample size required for developing a clinical prediction model. BMJ 2020; 368: m441. https://doi.org/10.1136/bmj.m441

Pepe MS, Feng Z, Janes H, Bossuyt PM, Potter JD. Pivotal Evaluation of the Accuracy of a Biomarker Used for Classification or Prediction: Standards for Study Design. JNCI Journal of the National Cancer Institute 2008; 100(20): 1432. https://doi.org/10.1093/jnci/djn326

Harrell , FE. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis [Internet]. Cham: Springer International Publishing; 2015 [citado el 26 de octubre de 2024]. (Springer Series in Statistics). https://doi.org/10.1007/978-3-319-19425-7

van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Medical Research Methodology 2014; 14(1): 137. https://doi.org/10.1186/1471-2288-14-137

Steyerberg EW, Harrell FE. Prediction models need appropriate internal, internal-external, and external validation. J Clin Epidemiol 2016; 69: 245-7. https://doi.org/10.1016/j.jclinepi.2015.04.005

Than M, Herbert M, Flaws D, Cullen L, Hess E, Hollander JE, et al. What is an acceptable risk of major adverse cardiac event in chest pain patients soon after discharge from the Emergency Department?: a clinical survey. Int J Cardiol 2013; 166(3): 752-4. https://doi.org/10.1016/j.ijcard.2012.09.171

Alba AC, Agoritsas T, Walsh M, Hanna S, Iorio A, Devereaux PJ, et al. Discrimination and Calibration of Clinical Prediction Models: Users’ Guides to the Medical Literature. JAMA 2017; 318(14): 1377-84. https://doi.org/10.1001/jama.2017.12126

Vickers AJ, Calster BV, Steyerberg EW. Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ 2016; 352: i6. https://doi.org/10.1136/bmj.i6

Vandenbroucke JP. When are observational studies as credible as randomised trials? Lancet 2004; 363(9422): 1728-31. https://doi.org/10.1016/S0140-6736(04)16261-2

Thorogood M, Vessey MP. An epidemiologic survey of cardiovascular disease in women taking oral contraceptives. Am J Obstet Gynecol 1990; 163(1 Pt 2): 274-81. https://doi.org/10.1016/0002-9378(90)90567-q

Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999; 189(1): 12-9. https://doi.org/10.1002/(SICI)1096-9896(199909)189: 1<12: : AID-PATH431>3.0.CO; 2-F

Greenland S. For and Against Methodologies: Some Perspectives on Recent Causal and Statistical Inference Debates. Eur J Epidemiol 2017; 32(1): 3-20. https://doi.org/10.1007/s10654-017-0230-6

Doll R, Hill AB. The Mortality of Doctors in Relation to Their Smoking Habits. British Medical Journal 1954; 1(4877): 1451. https://doi.org/10.1136/bmj.1.4877.1451

VanderWeele TJ. Explanation in causal inference: developments in mediation and interaction. International Journal of Epidemiology 2016; 45(6): 1904. https://doi.org/10.1093/ije/dyw277

Pearl J. Causality: Models, Reasoning, and Inference. Cambridge University Press; 2000. 412 p.

VanderWeele TJ, Ding P. Sensitivity Analysis in Observational Research: Introducing the E-Value. Ann Intern Med 2017; 167(4): 268-74. https://doi.org/10.7326/M16-2607

Hernán MA, Taubman SL. Does obesity shorten life? The importance of well-defined interventions to answer causal questions. Int J Obes (Lond) 2008; 32 Suppl 3: S8-14. https://doi.org/10.1038/ijo.2008.82

Downloads

Published

2024-11-20

How to Cite

Vera-Ponce, V. J. ., Zuzunaga-Montoya, F. E. ., Vásquez-Romer, L. E. M. ., Sanchez-Tamay, N. M. ., Loayza-Castro, J. A. ., & Gutierrez De Carrillo, C. I. . (2024). Scientific Tasks in Biomedical and Oncological Research: Describing, Predicting, and Explaining. Journal of Cancer Research Updates, 13, 52–65. https://doi.org/10.30683/1929-2279.2024.13.08

Issue

Section

Articles

Most read articles by the same author(s)